Организационно-производственная структура атомных электростанций. Типы тэс и их особенности

ТЕПЛОВЫЕ ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ. СТРУКТУРА ТЭС, ОСНОВНЫЕ ЭЛЕМЕНТЫ. ПАРОГЕНЕРАТОР. ПАРОВАЯ ТУРБИНА. КОНДЕНСАТОР

Классификация ТЭС

Тепловая электростанция (ТЭС) - электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива.

Первые ТЭС появились в конце 19 века (в 1882 г. - в Нью-Йорке, в 1883 г. - в С. Петербурге, в 1884 г. - в Берлине) и получили преимущественное распространение. В настоящее время ТЭС - основной вид электрических станций. Доля вырабатываемой ими электроэнергии составляет: в России примерно 70% , в мире около 76%.

Среди ТЭС преобладают тепловые паротурбинные электростанции (ТПЭС), на которых тепловая энергия используется в парогенераторе для получения водяного пара высокого давления, приводящего во вращение ротор паровой турбины, соединённый с ротором электрического генератора (обычно синхронного генератора). Генератор совместно с турбиной и возбудителем называется турбогенератором .В России на ТПЭС производится ~99% электроэнергии, вырабатываемой ТЭС. В качестве топлива на таких ТЭС используют уголь (преимущественно), мазут, природный газ, лигнит, торф, сланцы.

ТПЭС, имеющие в качестве привода электрогенераторов конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называются конденсационными электростанциями (КЭС). В России КЭС исторически называется Государственная районная электрическая станция, или ГРЭС. На ГРЭС вырабатывается около 65% электроэнергии, производимой на ТЭС. Их КПД достигает 40 %. Самая крупная в мире Сургутская ГРЭС-2; её мощность 4,8 ГВт; мощность Рефтинской ГРЭС 3,8 ГВт.

ТПЭС, оснащённые теплофикационными турбинами и отдающие тепло отработавшего пара промышленным или коммунально-бытовым потребителям, называются теплоэлектроцентралями (ТЭЦ); ими вырабатывается соответственно около 35 % электроэнергии, производимой на ТЭС. Благодаря более полному использованию тепловой энергии КПД ТЭЦ повышается до 60 - 65 %. Самые мощные ТЭЦ в России ТЭЦ-23 и ТЭЦ-25 Мосэнерго имеют мощность по 1410 МВт.

Промышленные газовые турбины появились значительно позже паровых турбин, так как для их изготовления требовались особые жаропрочные конструкционные материалы. На основе газовых турбин были созданы компактные и высокоманевренные газотурбинные установки (ГТУ). В камере сгорания ГТУ сжигают газ или жидкое топливо; продукты сгорания с температурой 750 - 900° С поступают в газовую турбину, вращающую ротор электрогенератора. КПД таких ТЭС обычно составляет 26 - 28%, мощность - до нескольких сотен МВт. ГТУ не отличаются экономичностью из-за высокой температуры уходящих газов.

ТЭС с ГТУ применяются основном как резервные источники электроэнергии для покрытия пиков электрической нагрузки или для снабжения электричеством небольших населённых пунктов.Они позволяют электростанции работать при резкопеременной нагрузке ; могут часто останавливаться, обеспечивают быстрый пуск, высокую скорость набора мощности и достаточно экономичную работу в широком диапазоне нагрузки. Как правило, ГТУ уступают паротурбинным ТЭС по удельному расходу топлива и себестоимости электроэнергии. Стоимость строительно-монтажных работ на ТЭС с ГТУ уменьшается примерно в два раза, так как не нужно строить котельный цех и насосную. Самая мощная ТЭС с ГТУ ГРЭС-3 им. Классона (Московская обл.) имеет мощность 600 МВт.

Отработанные газы ГТУ имеют достаточно высокую температуру, вследствие чего ГТУ имеют невысокий КПД. В парогазовой установке (ПГУ), состоящей из паротурбинного и газотурбинного агрегатов , горячие газы ГТУ используются для нагревания воды в парогенераторе. Это электростанции комбинированного типа. КПД ТЭС с ПГУ достигает 42 - 45%. ПГУ в настоящее время самый экономичный двигатель, используемый для получения электроэнергии. К тому же это самый экологически чистый двигатель, что объясняется высоким КПД. Появились ПГУ чуть более 20 лет назад, однако, сейчас это самый динамичный сектор энергетики. Самые мощные энергоблоки с ПГУ в России: на Южной ТЭЦ С. Петербурга - 300 МВт и на Невинномысской ГРЭС - 170 МВт.

ТЭС с ГТУ и ПГУ также могут отпускать тепло внешним потребителям, то есть работать как ТЭЦ.

По технологической схеме паропроводов ТЭС делятся на блочные ТЭС и на ТЭС с поперечными связями .

Блочные ТЭС состоят из отдельных, как правило, однотипных энергетических установок - энергоблоков. В энергоблоке каждый котёл подаёт пар только для своей турбины, из которой он возвращается после конденсации только в свой котёл. По блочной схеме строят все мощные ГРЭС и ТЭЦ, которые имеют так называемый промежуточный перегрев пара. Работа котлов и турбин на ТЭС с поперечными связями обеспечивается по-другому: все котлы ТЭС подают пар в один общий паропровод (коллектор) и от него питаются все паровые турбины ТЭС. По такой схеме строятся КЭС без промежуточного перегрева и почти все ТЭЦ на докритические начальные параметры пара.

По уровню начального давления различают ТЭС докритического давления и сверхкритического давления (СКД).

Критическое давление - это 22,1 МПа (225,6 ат). В российской теплоэнергетике начальные параметры стандартизованы: ТЭС и ТЭЦ строятся на докритическое давление 8,8 и 12,8 МПа (90 и 130 ат), и на СКД - 23,5 МПа (240 ат). ТЭС на сверхкритические параметры по техническим причинам выполняются с промежуточным перегревом и по блочной схеме.

Эффективность работы ТЭС оценивается коэффициентом полезного действия (КПД) , который определяется отношением количества энергии, отпущенной за некоторое время к затраченной теплоте, содержащейся в сожжённом топливе. Наряду с КПД для оценки работы ТЭС используется также другой показатель - удельный расход условного топлива (условное топливо это топливо, имеющее теплоту сгорания = 7000 ккал/кг=29,33 МДж/кг). Между КПД и условным расходом топлива имеется связь .

Структура ТЭС

Основные элементы ТЭС (рис. 3.1):

u котельная установка , преобразующая энергию химических связей топлива и производящая водяной пар с высокими температурой и давлением;

u турбинная (паротурбинная) установка , преобразующая тепловую энергию пара в механическую энергию вращения ротора турбоагрегата;

u электрогенератор , обеспечивающий преобразование кинетической энергии вращения ротора в электрическую энергию.

Рисунок 3.1. Основные элементы ТЭС

Тепловой баланс ТЭС показан на рис. 3.2.

Рисунок 3.2. Тепловой баланс ТЭС



Основная потеря энергии на ТЭС происходит из-за передачи теплоты пара охлаждающей воде в конденсаторе ; с теплом пара теряется более 50 % теплоты (энергии).

3.3. Парогенератор (котёл)

Основным элементом котельной установки является парогенератор , представляющий собой П-образную конструкцию с газоходами прямоугольного сечения. Большую часть котла занимает топка; её стены облицованы экранами из труб, по которым подводится питательная вода. В парогенераторе производится сжигание топлива, при этом вода превращается в пар высокого давления и температуры. Для полного сгорания топлива в топку котла нагнетается подогретый воздух; для выработки 1 кВт ч электроэнергии требуется около 5 м 3 воздуха.

При горении топлива энергия его химических связей превращается в тепловую и лучистую энергию факела . В результате химической реакции сгорания, при которой углерод топлива С превращается в оксиды СО и СО 2 , сера S - в оксиды SO 2 и SO 3 и т.д., и образуются продукты сгорания топлива (дымовые газы). Охлаждённые до температуры 130 - 160 О С дымовые газы через дымовую трубу покидают ТЭС, уносят около 10 - 15% энергии (рис.3.2).

В настоящее время наиболее широко используются барабанные (рис.3.3,а) и прямоточные котлы (рис.3.3,б). В экранах барабанных котлов осуществляется многократная циркуляция питательной воды; отделение пара от воды происходит в барабане. В прямоточных котлах вода проходит по трубам экрана только один раз, превращаясь в сухой насыщенный пар (пар в котором нет капелек воды).

а ) б )

Рисунок 3.3. Схемы барабанного (а) и прямоточного (б) парагенераторов

В последнее время для повышения эффективности работы парогенераторов производят сжигание угля при внутри-цикловой газификации и в циркулирующем кипящем слое ; при этом КПД увеличивается на 2,5%.

Паровая турбина

Турби́на (фр. turbine от лат. turbo вихрь, вращение) - это тепловой двигатель непрерывного действия, в лопаточном аппарате которого потенциальная энергия сжатого и нагретого водяного пара преобразуется в кинетическую энергию вращения ротора.

Попытки создать механизмы, похожие на паровые турбины, делались ещё тысячелетия назад. Известно описание паровой турбины, сделанное Героном Александрийским в 1-м веке до н. э., так называемая «турбина Герона» . Однако только в конце XIX века, когда термодинамика, машиностроение и металлургия достигли достаточного уровня Густаф Лаваль (Швеция) и Чарлз Парсонс (Великобритания) независимо друг от друга создали пригодные для промышленности паровые турбины . Для изготовления промышленной турбины требовалась значительно более высокая культура производства, чем для паровой машины.

В 1883 году Лаваль создал первую работающую паровую турбину . Его турбина представляла собой колесо, на лопатки которого подавался пар. Затем он дополнил сопла коническими расширителями; что значительно повысило КПД турбины и превратило её в универсальный двигатель. Пар, разогретый до высокой температуры, поступал из котла по паровой трубе к соплам и выходил наружу. В соплах пар расширялся до атмосферного давления. Благодаря увеличению объёма пара получалось значительное увеличение скорости вращения. Таким образом, заключённая в паре энергия передавалась лопастям турбины . Турбина Лаваля была намного экономичнее старых паровых двигателей.

В 1884 году Парсонс получил патент на многоступенчатую реактивную турбину , которую он создал специально для приведения в действие электрогенератора. В 1885 году он сконструировал многоступенчатую реактивную турбину (для повышения эффективности использования энергии пара), получившую в дальнейшем широкое применение на тепловых электростанциях.

Паровая турбина состоит из двух основных частей: ротора с лопатками - подвижная часть турбины; статора с соплами - неподвижная часть. Неподвижную часть выполняют разъёмной в горизонтальной плоскости для возможности выемки или монтажа ротора (рис.3.4.)

Рисунок 3.4. Вид простейшей паровой турбины

По направлению движения потока пара различают аксиальные паровые турбины , у которых поток пара движется вдоль оси турбины, и радиальные , направление потока пара в которых - перпендикулярно, а рабочие лопатки расположены параллельно оси вращения. В России и странах СНГ используются только аксиальные паровые турбины.

По способу действия пара турбины делятся на: активные , реактивные и комбинированные . В активной турбине используется кинетическая энергия пара, в реактивной: кинетическая и потенциальная .

Современные технологии позволяют поддерживать частоту вращения с точностью до трёх оборотов в минуту. Паровые турбины для электростанций рассчитываются на 100 тыс. часов работы (до капитального ремонта). Паровая турбина является одним из самых дорогих элементов ТЭС.

Достаточно полное использование энергии пара в турбине может быть достигнуто только при работе пара в ряде последовательно расположенных турбинах, которые называются ступенями или цилиндрами . В многоцилиндровых турбинах можно снизить скорость вращения рабочих дисков. На рис.3.5 показана трёхцилиндровая турбина (без кожуха). К первому цилиндру - цилиндру высокого давления (ЦВД) 4 пар подводится по паропроводам 3 непосредственно из котла и поэтому он имеет высокие параметры: для котлов СКД - давление 23, 5 МПа, температура 540 О С. На выходе ЦВД давление пара составляет 3-3,5 МПа (30 - 35 ат), а температура - 300 О - 340 О С.

Рисунок 3.5. Трёхцилиндровая паровая турбина

Для снижения эрозии лопаток турбины (влажным паром) из ЦВД относительно холодный пар возвращается обратно в котёл , в так называемый промежуточный пароперегреватель; в нём температура пара повышается до исходной (540 О С). Вновь нагретый пар подаётся по паропроводам 6 в цилиндр среднего давления (ЦСД) 10. После расширения пара в ЦСД до давления 0,2 - 0,3 МПа (2 - 3 ат) пар с помощью выхлопных труб подаётся в ресиверные трубы 7, из которых направляется в цилиндр низкого давления (ЦНД) 9. Скорость течения пара в элементах турбины 50-500 м/с. Лопатка последней ступени турбины имеет длину 960 мм и массу 12 кг.

КПД тепловых машин и паровой идеальной турбины, в частности, определяется выражением:

,

где - теплота, полученная рабочим телом от нагревателя, - теплота, отданная холодильнику. Сади Карно в 1824 г. теоретически получил выражение для предельного (максимального) значение КПД тепловой машины с рабочим телом в виде идеального газа

,

где - температура нагревателя, - температура холодильника, т.е. температуры пара на входе и выходе турбины соответственно, измеряемые градусах Кельвина (К). Для реальных тепловых двигателей .

Для повышения КПД турбины понижать нецелесообразно ; это связано с дополнительным расходом энергии. Поэтому для увеличения КПД можно увеличить . Однако для современного развития технологий здесь уже достигнут предел.

Современные паровые турбины делятся на: конденсационные и теплофикационные . Конденсационные паровые турбины служат для превращения максимально возможной части энергии (теплоты) пара в механическую энергию. Они работают с выпуском (выхлопом) отработавшего пара в конденсатор, в котором поддерживается вакуум (отсюда возникло наименование).

Тепловые электростанции, на которых установлены конденсационные турбины, называются конденсационными электрическими станциями (КЭС). Основной конечный продукт таких электростанций - электроэнергия. Лишь небольшая часть тепловой энергии используется на собственные нужды электростанции и, иногда, для снабжения теплом близлежащего населённого пункта. Обычно это посёлок энергетиков. Доказано, что чем больше мощность турбогенератора, тем он экономичнее, и тем ниже стоимость 1 кВт установленной мощности. Поэтому на конденсационных электростанциях устанавливаются турбогенераторы повышенной мощности.

Теплофикационные паровые турбины служат для одновременного получения электрической и тепловой энергии. Но основной конечный продукт таких турбин - тепло. Тепловые электростанции, на которых установлены теплофикационные паровые турбины, называются теплоэлектроцентралями (ТЭЦ). Теплофикационные паровые турбины делятся на: турбины с противодавлением, с регулируемым отбором пара и с отбором и противодавлением .

У турбин с противодавлением весь отработавший пар используется для технологических целей (варка, сушка, отопление). Электрическая мощность, развиваемая турбоагрегатом с такой паровой турбиной, зависит от потребности производства или отопительной системы в греющем паре и меняется вместе с ней. Поэтому турбоагрегат с противодавлением обычно работает параллельно с конденсационной турбиной или электросетью, которые покрывают возникающий дефицит в электроэнергии. У турбин с отбором и противодавлением часть пара отводится из 1-й или 2-й промежуточных ступеней, а весь отработавший пар направляется из выпускного патрубка в отопительную систему или к сетевым подогревателям.

Турбины являются самыми сложными элементами ТЭС. Сложность создания турбин определяется не только высокими технологическими требованиями к изготовлению, материалами и т.п., но главным образом, чрезвычайной наукоёмкостью . В настоящее время число стран выпускающих мощные паровые турбины не превышает десяти. Наиболее сложным элементом является ЦНД. Основными производителями турбин в России является Ленинградский металлический завод (г. С. Петербург) и турбомоторный завод (г. Екатеринбург).

Низкое значение КПД паровых турбин и обусловливает эффективность его первоочередного повышения. Поэтому именно паротурбинной установке ниже уделяется основное внимание.

Основными потенциальными методами повышения экономичности паровых турбин являются:

· аэродинамическое совершенствование паровой турбины;

· совершенствование термодинамического цикла, главным образом, путём повышения параметров пара, поступающего из котла, и снижения давления пара, отработавшего в турбине;

· совершенствование и оптимизация тепловой схемы и её оборудования.

Аэродинамическое совершенствование турбин за рубежом в последние 20 лет обеспечивалось с помощью трёхмерного компьютерного моделирования турбин. Прежде всего, необходимо отметить разработку саблевидных лопаток . Саблевидными лопатками называются изогнутые лопатки, напоминающие по внешнему виду саблю (в зарубежной литературе используются термины «банановая» и «трёхмерная»).

Фирма Siemens использует «трёхмерные» лопатки для ЦВД и ЦСД (рис. 3.6), где лопатки имеют малую длину, но зато относительно большую зону высоких потерь в корневой и периферийных зонах. По оценкам фирмы Siemens использование пространственных лопаток в ЦВД и ЦСД позволяет увеличить их КПД на 1 - 2 % по сравнению с цилиндрами, созданными в 80-е годы прошлого века.

Рисунок 3.6. «Трёхмерные» лопатки для ЦВД и ЦСД фирмы Siemens

На рис. 3.7 показаны три последовательных модификации рабочих лопаток для ЦВД и первых ступеней ЦНД паровых турбин для АЭС фирмы GEC-Alsthom : обычная («радиальная») лопатка постоянного профиля (рис. 3.7, а ), используемая в наших турбинах; саблевидная лопатка (рис. 3.7, б ) и, наконец, новая лопатка с прямой радиальной выходной кромкой (рис. 3.7, в ). Новая лопатка обеспечивает КПД на 2 % больший, чем исходная (рис. 3.7, а ).

Рисунок 3.7. Рабочие лопатки для паровых турбин для АЭС фирмы GEC-Alsthom

Конденсатор

Отработанный в турбине пар (давление на выходе ЦНД составляет 3 - 5 кПа, что в 25 - 30 раз меньше атмосферного) поступает в конденсатор . Конденсатор представляет собой теплообменник, по трубам которого непрерывно циркулирует охлаждающая вода, подаваемая циркуляционными насосами из водохранилища. На выходе из турбины с помощью конденсатора поддерживается глубокий вакуум. На рис.3.8 показан двухходовой конденсатор мощной паровой турбины.

Рисунок 3.8. Двухходовой конденсатор мощной паровой турбины

Конденсатор состоит из стального сварного корпуса 8, по краям которого в трубной доске закреплены конденсаторные трубки 14. Конденсат собирается в конденсаторе и постоянно откачивается конденсатными насосами .

Для подвода и отвода охлаждающей воды служит передняя водяная камера 4. Вода подаётся снизу в правую часть камеры 4 и через отверстия в трубной доске попадает в охлаждающие трубки, по которым движется до задней (поворотной) камеры 9. Пар поступает в конденсатор сверху, встречается с холодной поверхностью и конденсируется на них. Поскольку конденсация идёт при низкой температуре, которой соответствует низкое давление конденсации, то в конденсаторе создаётся глубокое разряжение (в 25-30 раз меньше атмосферного давления).

Для того чтобы конденсатор обеспечивал низкое давление за турбиной, и, соответственно, конденсацию пара требуется большое количество холодной воды. Для выработки 1 кВт ч электроэнергии требуется приблизительно 0,12 м 3 воды; один энергоблок НчГРЭС за 1с использует 10 м 3 воды. Поэтому ТЭС строят либо вблизи природных источников воды, либо строят искусственные водоёмы. В случае невозможности использования большого количества воды для конденсации пара, вместо использования водохранилища, вода может охлаждаться в специальных охладительных башнях - градирнях , которые благодаря своим размерам обычно являются самой заметной частью электростанции (рис.3.9).

Из конденсатора с помощью питательного насоса конденсат возвращается в парогенератор.

Рисунок 3.9. Внешний вид градирни ТЭЦ

КОНТРОЛЬНЫЕ ВОПРОСЫ К ЛЕКЦИИ 3

1. Структурная схема ТЭС и назначение её элементов – 3 балла.

2. Тепловая схема ТЭС – 3 балла.

3. Тепловой баланс ТЭС – 3 балла.

4. Парогенератор ТЭС. Назначение, типы, структурная схема, КПД – 3 балла.

5. Параметры пара на ТЭС – 5 баллов

6. Паровая турбина. Устройство. Разработки Лаваля и Парсонса – 3 балла.

7. Многоцилиндровые турбины – 3 балла.

8. КПД идеальной турбины – 5 баллов.

9. Конденсационные и теплофикационные паровые турбины – 3 балла.

10. Чем отличается КЭС от ТЭЦ? КПД КЭС и ТЭЦ – 3 балла.

11. Конденсатор ТЭС – 3 балла.


На рис. 1 представлена классификация тепловых электрических станций на органическом топливе.

Рис. 1.

Тепловой электрической станцией называется комплекс оборудования и устройств, преобразующих энергию топлива в электрическую и (в общем случае) тепловую энергию.

Тепловые электростанции характеризуются большим разнообразием и их можно классифицировать по различным признакам.

По назначению и виду отпускаемой энергии электростанции разделяются на районные и промышленные.

Районные электростанции - это самостоятельные электростанции общего пользования, которые обслуживают все виды потребителей района (промышленные предприятия, транспорт, население и т.д.). Районные конденсационные электростанции, вырабатывающие в основном электроэнергию, часто сохраняют за собой историческое название - ГРЭС (государственные районные электростанции). Районные электростанции, вырабатывающие электрическую и тепловую энергию (в виде пара или горячей воды), называются теплоэлектроцентралями (ТЭЦ). Как правило, ГРЭС и районные ТЭЦ имеют мощность более 1 млн кВт.

Промышленные электростанции - это электростанции, обслуживающие тепловой и электрической энергией конкретные производственные предприятия или их комплекс, например завод по производству химической продукции. Промышленные электростанции входят в состав тех промышленных предприятий, которые они обслуживают. Их мощность определяется потребностями промышленных предприятий в тепловой и электрической энергии и, как правило, она существенно меньше, чем районных ТЭС. Часто промышленные электростанции работают на общую электрическую сеть, но не подчиняются диспетчеру энергосистемы.

По виду используемого топлива тепловые электростанции разделяются на электростанции, работающие на органическом топливе и ядерном горючем.

За конденсационными электростанциями, работающими на органическом топливе, во времена, когда еще не было атомных электростанций (АЭС), исторически сложилось название тепловых (ТЭС - тепловая электрическая станция). Именно в таком смысле ниже будет употребляться этот термин, хотя и ТЭЦ, и АЭС, и газотурбинные электростанции (ГТЭС), и парогазовые электростанции (ПГЭС) также являются тепловыми электростанциями, работающими на принципе преобразования тепловой энергии в электрическую.

В качестве органического топлива для ТЭС используют газообразное, жидкое и твердое топливо. Большинство ТЭС России, особенно в европейской части, в качестве основного топлива потребляют природный газ, а в качестве резервного топлива - мазут, используя последний ввиду его высокой стоимости только в крайних случаях; такие ТЭС называют газомазутными. Во многих регионах, в основном в азиатской части России, основным топливом является энергетический уголь - низкокалорийный уголь или отходы добычи высококалорийного каменного угля (антрацитовый штыб - АШ). Поскольку перед сжиганием такие угли размалываются в специальных мельницах до пылевидного состояния, то такие ТЭС называют пылеугольными.

По типу теплосиловых установок, используемых на ТЭС для преобразования тепловой энергии в механическую энергию вращения роторов турбоагрегатов, различают паротурбинные, газотурбинные и парогазовые электростанции.

Основой паротурбинных электростанций являются паротурбинные установки (ПТУ), которые для преобразования тепловой энергии в механическую используют самую сложную, самую мощную и чрезвычайно совершенную энергетическую машину - паровую турбину. ПТУ - основной элемент ТЭС, ТЭЦ и АЭС.

ПТУ, имеющие в качестве привода электрогенераторов конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называются конденсационными электростанциями. ПТУ оснащённые теплофикационными турбинами и отдающие тепло отработавшего пара промышленным или коммунально-бытовым потребителям, называют теплоэлектроцентралями (ТЭЦ).

Газотурбинные тепловые электростанции (ГТЭС) оснащаются газотурбинными установками (ГТУ), работающими на газообразном или, в крайнем случае, жидком (дизельном) топливе. Поскольку температура газов за ГТУ достаточно высока, то их можно использовать для отпуска тепловой энергии внешнему потребителю. Такие электростанции называют ГТУ-ТЭЦ. В настоящее время в России функционирует одна ГТЭС (ГРЭС-3 им. Классона, г. Электрогорск Московской обл.) мощностью 600 МВт и одна ГТУ-ТЭЦ (в г. Электросталь Московской обл.).

Традиционная современная газотурбинная установка (ГТУ) - это совокупность воздушного компрессора, камеры сгорания и газовой турбины, а также вспомогательных систем, обеспечивающих ее работу. Совокупность ГТУ и электрического генератора называют газотурбинным агрегатом.

Парогазовые тепловые электростанции комплектуются парогазовыми установками (ПГУ), представляющими комбинацию ГТУ и ПТУ, что позволяет обеспечить высокую экономичность. ПГУ-ТЭС могут выполняться конденсационными (ПГУ-КЭС) и с отпуском тепловой энергии (ПГУ-ТЭЦ). В настоящее время в России работает четыре новых ПГУ-ТЭЦ (Северо-Западная ТЭЦ Санкт-Петербурга, Калининградская, ТЭЦ-27 ОАО «Мосэнерго» и Сочинская), построена также теплофикационная ПГУ на Тюменской ТЭЦ. В 2007 г. введена в эксплуатацию Ивановская ПГУ-КЭС.

Блочные ТЭС состоят из отдельных, как правило, однотипных энергетических установок - энергоблоков. В энергоблоке каждый котел подает пар только для своей турбины, из которой он возвращается после конденсации только в свой котел. По блочной схеме строят все мощные ГРЭС и ТЭЦ, которые имеют так называемый промежуточный перегрев пара. Работа котлов и турбин на ТЭС с поперечными связями обеспечивается по другому: все котлы ТЭС подают пар в один общий паропровод (коллектор) и от него питаются все паровые турбины ТЭС. По такой схеме строятся КЭС без промежуточного перегрева и почти все ТЭЦ на докритические начальные параметры пара.

По уровню начального давления различают ТЭС докритического давления, сверхкритического давления (СКД) и суперсверхкритических параметров (ССКП).

Критическое давление - это 22,1 МПа (225,6 ат). В российской теплоэнергетике начальные параметры стандартизованы: ТЭС и ТЭЦ строятся на докритическое давление 8,8 и 12,8 МПа (90 и 130 ат), и на СКД - 23,5 МПа (240 ат). ТЭС на сверхкритические параметры по техническим причинам выполняется с промежуточным перегревом и по блочной схеме. К суперсверхкритическим параметрам условно относят давление более 24 МПа (вплоть до 35 МПа) и температуру более 5600С (вплоть до 6200С), использование которых требует новых материалов и новых конструкций оборудования. Часто ТЭС или ТЭЦ на разный уровень параметров строят в несколько этапов - очередями, параметры которых повышаются с вводом каждой новой очереди.

У этой паровой турбины хорошо видны лопатки рабочих колес.

Тепловая электростанция (ТЭЦ) использует энергию, высвобождающуюся при сжигании органического топлива - угля, нефти и природного газа - для превращения воды в пар высокого давления. Этот пар, имеющий давление около 240 килограммов на квадратный сантиметр и температуру 524°С (1000°F), приводит во вращение турбину. Турбина вращает гигантский магнит внутри генератора, который вырабатывает электроэнергию.

Современные тепловые электростанции превращают в электроэнергию около 40 процентов теплоты, выделившейся при сгорании топлива, остальная сбрасывается в окружающую среду. В Европе многие тепловые электростанции используют отработанную теплоту для отопления близлежащих домов и предприятий. Комбинированная выработка тепла и электроэнергии увеличивает энергетическую отдачу электростанции до 80 процентов.

Паротурбинная установка с электрогенератором

Типичная паровая турбина содержит две группы лопаток. Пар высокого давления, поступающий непосредственно из котла, входит в проточную часть турбины и вращает рабочие колеса с первой группой лопаток. Затем пар подогревается в пароперегревателе и снова поступает в проточную часть турбины, чтобы вращать рабочие колеса с второй группой лопаток, которые работают при более низком давлении пара.

Вид в разрезе

Типичный генератор тепловой электростанции (ТЭЦ) приводится во вращение непосредственно паровой турбиной, которая совершает 3000 оборотов в минуту. В генераторах такого типа магнит, который называют также ротором, вращается, а обмотки (статор) неподвижны. Система охлаждения предупреждает перегрев генератора.

Выработка энергии при помощи пара

На тепловой электростанции топливо сгорает в котле, с образованием высокотемпературного пламени. Вода проходит по трубкам через пламя, нагревается и превращается в пар высокого давления. Пар приводит во вращение турбину, вырабатывая механическую энергию, которую генератор превращает в электричество. Выйдя из турбины, пар поступает в конденсатор, где омывает трубки с холодной проточной водой, и в результате снова превращается в жидкость.

Мазутный, угольный или газовый котел

Внутри котла

Котел заполнен причудливо изогнутыми трубками, по которым проходит нагреваемая вода. Сложная конфигурация трубок позволяет существенно увеличить количество переданной воде теплоты и за счет этого вырабатывать намного больше пара.

Электрической станцией называется энергетическая установка, служащая для преобразования природной энергии в электрическую. Наиболее распространены тепловые электрические станции (ТЭС), использующие тепловую энергию, выделяемую при сжигании органического топлива (твердого, жидкого и газообразного).

На тепловых электростанциях вырабатывается около 76% электроэнергии, производимой на нашей планете. Это обусловлено наличием органического топлива почти во всех районах нашей планеты; возможностью транспорта органического топлива с места добычи на электростанцию, размещаемую близ потребителей энергии; техническим прогрессом на тепловых электростанциях, обеспечивающим сооружение ТЭС большой мощностью; возможностью использования отработавшего тепла рабочего тела и отпуска потребителям, кроме электрической, также и тепловой энергии (с паром или горячей водой) и т.п.

Высокий технический уровень энергетики может быть обеспечен только при гармоничной структуре генерирующих мощностей: в энергосистеме должны быть и АЭС, вырабатывающие дешевую электроэнергию, но имеющие серьезные ограничения по диапазону и скорости изменения нагрузки, и ТЭЦ, отпускающие тепло и электроэнергию, количество которой зависит от потребностей в тепле, и мощные паротурбинные энергоблоки, работающие на тяжелых топливах, и мобильные автономные ГТУ, покрывающие кратковременные пики нагрузки.

1.1 Типы тэс и их особенности.

На рис. 1 представлена классификация тепловых электрических станций на органическом топливе.

Рис.1. Типы тепловых электростанций на органическом топливе.

Рис.2 Принципиальная тепловая схема ТЭС

1 – паровой котёл; 2 – турбина; 3 – электрогенератор; 4 – конденсатор; 5 – конденсатный насос; 6 – подогреватели низкого давления; 7 – деаэратор; 8 – питательный насос; 9 – подогреватели высокого давления; 10 – дренажный насос.

Тепловой электрической станцией называется комплекс оборудования и устройств, преобразующих энергию топлива в электрическую и (в общем случае) тепловую энергию.

Тепловые электростанции характеризуются большим разнообразием и их можно классифицировать по различным признакам.

По назначению и виду отпускаемой энергии электростанции разделяются на районные и промышленные.

Районные электростанции – это самостоятельные электростанции общего пользования, которые обслуживают все виды потребителей района (промышленные предприятия, транспорт, население и т.д.). Районные конденсационные электростанции, вырабатывающие в основном электроэнергию, часто сохраняют за собой историческое название – ГРЭС (государственные районные электростанции). Районные электростанции, вырабатывающие электрическую и тепловую энергию (в виде пара или горячей воды), называются теплоэлектроцентралями (ТЭЦ). Как правило, ГРЭС и районные ТЭЦ имеют мощность более 1 млн кВт.

Промышленные электростанции – это электростанции, обслуживающие тепловой и электрической энергией конкретные производственные предприятия или их комплекс, например завод по производству химической продукции. Промышленные электростанции входят в состав тех промышленных предприятий, которые они обслуживают. Их мощность определяется потребностями промышленных предприятий в тепловой и электрической энергии и, как правило, она существенно меньше, чем районных ТЭС. Часто промышленные электростанции работают на общую электрическую сеть, но не подчиняются диспетчеру энергосистемы.

По виду используемого топлива тепловые электростанции разделяются на электростанции, работающие на органическом топливе и ядерном горючем.

За конденсационными электростанциями, работающими на органическом топливе, во времена, когда еще не было атомных электростанций (АЭС), исторически сложилось название тепловых (ТЭС – тепловая электрическая станция). Именно в таком смысле ниже будет употребляться этот термин, хотя и ТЭЦ, и АЭС, и газотурбинные электростанции (ГТЭС), и парогазовые электростанции (ПГЭС) также являются тепловыми электростанциями, работающими на принципе преобразования тепловой энергии в электрическую.

В качестве органического топлива для ТЭС используют газообразное, жидкое и твердое топливо. Большинство ТЭС России, особенно в европейской части, в качестве основного топлива потребляют природный газ, а в качестве резервного топлива – мазут, используя последний ввиду его высокой стоимости только в крайних случаях; такие ТЭС называют газомазутными. Во многих регионах, в основном в азиатской части России, основным топливом является энергетический уголь – низкокалорийный уголь или отходы добычи высококалорийного каменного угля (антрацитовый штыб - АШ). Поскольку перед сжиганием такие угли размалываются в специальных мельницах до пылевидного состояния, то такие ТЭС называют пылеугольными.

По типу теплосиловых установок, используемых на ТЭС для преобразования тепловой энергии в механическую энергию вращения роторов турбоагрегатов, различают паротурбинные, газотурбинные и парогазовые электростанции.

Основой паротурбинных электростанций являются паротурбинные установки (ПТУ), которые для преобразования тепловой энергии в механическую используют самую сложную, самую мощную и чрезвычайно совершенную энергетическую машину – паровую турбину. ПТУ – основной элемент ТЭС, ТЭЦ и АЭС.

ПТУ, имеющие в качестве привода электрогенераторов конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называются конденсационными электростанциями. ПТУ оснащённые теплофикационными турбинами и отдающие тепло отработавшего пара промышленным или коммунально-бытовым потребителям, называют теплоэлектроцентралями (ТЭЦ).

Газотурбинные тепловые электростанции (ГТЭС) оснащаются газотурбинными установками (ГТУ), работающими на газообразном или, в крайнем случае, жидком (дизельном) топливе. Поскольку температура газов за ГТУ достаточно высока, то их можно использовать для отпуска тепловой энергии внешнему потребителю. Такие электростанции называют ГТУ-ТЭЦ. В настоящее время в России функционирует одна ГТЭС (ГРЭС-3 им. Классона, г. Электрогорск Московской обл.) мощностью 600 МВт и одна ГТУ-ТЭЦ (в г. Электросталь Московской обл.).

Традиционная современная газотурбинная установка (ГТУ) – это совокупность воздушного компрессора, камеры сгорания и газовой турбины, а также вспомогательных систем, обеспечивающих ее работу. Совокупность ГТУ и электрического генератора называют газотурбинным агрегатом.

Парогазовые тепловые электростанции комплектуются парогазовыми установками (ПГУ), представляющими комбинацию ГТУ и ПТУ, что позволяет обеспечить высокую экономичность. ПГУ-ТЭС могут выполняться конденсационными (ПГУ-КЭС) и с отпуском тепловой энергии (ПГУ-ТЭЦ). В настоящее время в России работает четыре новых ПГУ-ТЭЦ (Северо-Западная ТЭЦ Санкт-Петербурга, Калининградская, ТЭЦ-27 ОАО «Мосэнерго» и Сочинская), построена также теплофикационная ПГУ на Тюменской ТЭЦ. В 2007 г. введена в эксплуатацию Ивановская ПГУ-КЭС.

Блочные ТЭС состоят из отдельных, как правило, однотипных энергетических установок – энергоблоков. В энергоблоке каждый котел подает пар только для своей турбины, из которой он возвращается после конденсации только в свой котел. По блочной схеме строят все мощные ГРЭС и ТЭЦ, которые имеют так называемый промежуточный перегрев пара. Работа котлов и турбин на ТЭС с поперечными связями обеспечивается по другому: все котлы ТЭС подают пар в один общий паропровод (коллектор) и от него питаются все паровые турбины ТЭС. По такой схеме строятся КЭС без промежуточного перегрева и почти все ТЭЦ на докритические начальные параметры пара.

По уровню начального давления различают ТЭС докритического давления, сверхкритического давления (СКД) и суперсверхкритических параметров (ССКП).

Критическое давление – это 22,1 МПа (225,6 ат). В российской теплоэнергетике начальные параметры стандартизованы: ТЭС и ТЭЦ строятся на докритическое давление 8,8 и 12,8 МПа (90 и 130 ат), и на СКД – 23,5 МПа (240 ат). ТЭС на сверхкритические параметры по техническим причинам вполняется с промежуточным перегревом и по блочной схеме. К суперсверхкритическим параметрам условно относят давление более 24 МПа (вплоть до 35 МПа) и температуру более 5600С (вплоть до 6200С), использование которых требует новых материалов и новых конструкций оборудования. Часто ТЭС или ТЭЦ на разный уровень параметров строят в несколько этапов – очередями, параметры которых повышаются с вводом каждой новой очереди.

Организационно-производственная структура АЭС в основном подобна ТЭС . На АЭС вместо котельного цеха организуется реакторный цех. К нему относятся реактор, парогенераторы, вспомогательное оборудование. В состав вспомогательного подразделения входит химико-дезактивационный цех, который включает в себя спецводоочистку, хранилище жидких и сухих радиоактивных отходов, лабора­торию.

Специфичным для АЭС является отдел радиационной безопасности, задачей которого является предотвращение опасного для здоровья воздействия излучений на обслуживающий персонал и окружающую среду. В состав отдела входят радиохимическая и радиометрическая лаборатория, специальный санпропускник и спец-прачечная.

Цеховая организационно-производственная структура атомной электростанции

Организационно-производственная структура предприятия электрических сетей

В каждой энергосистеме для осуществления ремонтно-эксплуатационного и диспетчерского обслуживания электросетевого хо­зяйства создаются предприятия электрических сетей (ПЭС). Электросе­тевые предприятия могут быть двух типов: специализированные и комплексные. Специализированными являются: предприятия, об­служивающие высоковольтные линии и подстанции напряжени­ем свыше 35 кВ; распределительные сети 0,4...20 кВ в сельской местности; распределительные сети 0,4... 20 кВ в городах и посел­ках городского типа. Комплексные предприятия обслуживают сети всех напряжений и в городах, и в сельской местности. К их числу относится большинство предприятий.

Предприятия электросетей управляются по следующим схемам управления:

    территориальной;

    функциональной;

    смешанной.

При терри­ториальной схеме управления электрические сети всех напряже­ний, расположенные на определенной территории (как правило, на территории административного района), обслуживаются райо­нами электросетей (РЭС), подчиненными руководству предприя­тия.

Функциональная схема управления характеризуется тем, что электрообъекты закреплены за соответствующими службами пред­приятия, обеспечивающими их эксплуатацию, и применяется при высокой концентрации электросетевого хозяйства на сравнитель­но небольшой территории. Специализация, как правило, бывает по под станционному, линейному оборудованию, релейной защите и т.п.

Наибольшее распространение получила смешанная схема управления предприятием, при которой наиболее сложные эле­менты сети закреплены за соответствующими службами, а основ­ной объем электросетей эксплуатируется районами или участка­ми электрических сетей. В состав таких предприятий входят функциональные отделы, производственные службы, районы и участки сетей.

Предприятие электрических сетей может быть или структур­ным подразделением в составе АО-Энерго, или самостоятельным производственным подразделением по передаче и распределению электроэнергии - АО ПЭС. Основной задачей ПЭС является обес­печение договорных условий электроснабжения потребителей за счет надежной и эффективной эксплуатации оборудования. Организационная структура ПЭС зависит от многих условий: место­расположения (город или сельская местность), уровня развития предприятия, класса напряжения оборудования, перспективы развития сетей, объема обслуживания, который рассчитывается на основании отраслевых нормативов в условных единицах, и дру­гих факторов.