Самый интересный факт о химии. Органическая химия: интересные факты

В один из дней 1903-го года французский химик Эдуард Бенедикт готовился к очередному эксперименту в лаборатории – он не глядя протянул руку за чистой колбой, стоявшей на полке в шкафу, и уронил ее.

Взяв метлу и совок чтобы убрать осколки, Эдуард подошел к шкафу и обнаружил с удивлением, что колба хоть и разбилась, но все ее фрагменты остались на месте, их соединяла друг с другом какая-то пленка.

Химик позвал лаборанта – тот был обязан мыть стеклянную посуду после опытов и попытался выяснить, что было в колбе. Оказалось, что эта емкость использовалась несколько дней назад в ходе экспериментов с нитратом целлюлозы (нитроцеллюлозой) – спиртовым раствором жидкого пластика, небольшое количество которого после испарения спирта осталось на стенках колбы и застыло пленкой. А поскольку слой пластика был тонок и достаточно прозрачен, лаборант решил, что емкость пуста.

Спустя пару-тройку недель после истории с не разлетевшейся на осколки колбой, Эдуарду Бенедикту попалась на глаза заметка в утренней газете, в которой описывались последствия лобовых столкновений нового в те годы вида транспорта – автомобилей. Ветровое стекло разлеталось осколками, нанося водителям множественные порезы, лишая зрения и нормальной внешности. Фотографии пострадавших произвели на Бенедикта тягостное впечатление и тут он вспомнил о «небьющейся» колбе. Бросившись в лабораторию, следующие 24 часа своей жизни французский химик посвятил созданию небьющегося стекла. Он наносил нитроцеллюлозу на стекло, сушил слой пластика и бросал композит на каменный пол – снова, снова и снова. Так Эдуард Бенедикт изобрел первое стекло-триплекс.

Многослойное стекло

Стекло, образованное несколькими слоями из силикатного или органического стекла, соединенными особой полимерной пленкой, называется триплексом. В качестве полимера, соединяющего стекла, обычно используется поливинилбутираль (PVB). Существует два основных способа производства многослойного стекла триплекс – заливной и ламинационный (автоклавный или вакуумный).

Технология заливного триплекса. Листы флоат-стекла нарезаются по размерам, при необходимости им придается изогнутая форма (выполняется моллирование). После тщательно очистки поверхностей стекла укладываются друг на друга с тем, чтобы между ними оставался просвет (полость) высотой не более 2 мм – дистанция фиксируется с помощью особой резиновой полосы. Совмещенные листы стекла выставляются под углом к горизонтальной поверхности, в полость между ними заливается поливинилбутираль, резиновая вставка по периметру препятствует его вытеканию. Чтобы достичь равномерности полимерного слоя, стекла помещают под пресс. Окончательное соединение листов стекла за счет отверждения поливинилбутираля происходит под ультрафиолетовым излучением в специальной камере, внутри которой поддерживается температура в диапазоне от 25 до 30 о С. После формирования триплекса, из него извлекается резиновая лента и производится обточка кромки.

Автоклавная ламинация триплекса. После резки листов стекла,
обработки кромок и моллирования, они очищаются от загрязнений. По окончании подготовки листов флоат-стекла, между ними укладывается PVB пленка, сформированный «сэндвич» помещается в пластиковую оболочку – в вакуумной установке из пакета полностью выводится воздух. Окончательное соединение слоев «сэндвича» происходит в автоклаве, под давлением 12,5 бар и температурой 150 о С.

Вакуумная ламинация триплекса. По сравнению с автоклавной технологией, вакуумная триплексация выполняется при меньших давлении и температуре. Последовательность рабочих операций у них схожа: нарезка стекла, придание изогнутой формы в моллирующей печи, обточка кромок, тщательная чистка и обезжиривание поверхностей. При формировании «сэндвича» между стеклами помещается этиленвинилацетатная (EVA) или PVB пленка, затем их помещают в вакуумную машину, предварительно уложив в пластиковый мешок. Спаивание стеклянных листов происходит именно в этой установке: откачивается воздух; «сэндвич» нагревается до максимальных 130 о С, происходит полимеризация пленки; триплекс охлаждается до 55 о С. Полимеризация выполняется в разреженной атмосфере (- 0,95 бар), при снижении температуры до 55 о С давление в камере выравнивается до атмосферного и, как только температура многослойного стекла составит 45 о С, формирование триплекса завершается.

Многослойное стекло, созданное по заливной технологии, более прочное, но менее прозрачное, чем ламинированный триплекс.

Из стеклянных сэндвичей, выполненных по одной из триплекс-технологий, создаются лобовые стекла автомашин, они необходимы для остекления высотных зданий, в построении перегородок внутри офисов и жилых домов. Триплекс популярен у дизайнеров – изделия из него являются неотъемлемым элементом стиля модерн.

Но, несмотря на отсутствие осколков при ударе по многослойному «сэндвичу» из силикатного стекла и полимера, пулю он не остановит. А вот рассмотренные ниже триплекс-стекла сделают это вполне успешно.

Бронированное стекло – история создания

В 1928 году немецкие химики создают новый материал, немедленно заинтересовавший авиаконструкторов – плексиглас. В 1935 году руководителю НИИ «Пластмасс» Сергею Ушакову удалось достать в Германии образец «гибкого стекла», советские ученые занялись его исследованием и разработкой технологии серийного производства. Спустя год производство органического стекла из полиметилметакрилата было начало на заводе «К-4» в Ленинграде. Одновременно были начаты эксперименты, направленные на создание бронированного стекла.

Закаленное стекло, созданное в 1929 году французской компанией SSG, в середине 30-х годов под названием «сталинит» выпускалось в СССР. Технология закалки заключалась в следующем – листы самого обычного силикатного стекла нагревались до температур в диапазоне от 600 до 720 о С, т.е. выше температуры размягчения стекла. Затем лист стекла подвергался быстрому охлаждению – потоки холодного воздуха за несколько минут понижали его температуру до 350-450 о С. Благодаря закалке стекло получало высокие прочностные свойства: сопротивляемость удару возрастала в 5-10 раз; прочность на изгиб – не менее чем в два раза; термостойкость – в три-четыре раза.

Однако, несмотря на высокую прочность, «сталинит» не годился для моллирования с целью формиров
ания фонаря кабины самолета – закалка не позволяла его гнуть. Кроме того закаленное стекло содержит в себе значительное количество зон внутреннего напряжения, легкий удар по ним приводил к полному разрушению всего листа. «Сталинит» нельзя резать, обрабатывать и сверлить. Тогда советские конструкторы решили комбинировать пластичное оргстекло и «сталинит», превратив их недостатки в достоинство.

Предварительно формованный фонарь самолета покрывался небольшими плитками из закаленного стекла, клеем служил поливинилбутираль.

Прозрачная броня

Современное бронестекло, также называемое прозрачной броней, представляет собой многослойный композит, образованный листами силикатного стекла, оргстекла, полиуретана и поликарбоната. Также в состав бронированного триплекса могут входить кварцевое и керамическое стекло, синтетический сапфир.

Европейские производители бронестекол выпускают в основном триплекс, состоящий из нескольких «сырых» флоат-стекол и поликарбоната. К слову, незакаленное стекло в среде компаний, выпускающих прозрачную броню, называется «сырым» - в триплексе с поликарбонатом применяется именно «сырое» стекло.

Лист поликарбоната в таком многослойном стекле устанавливается на сторону, обращенную внутрь защищаемого помещения. Задача пластика заключается в гашении колебаний, вызванных ударной волной при столкновении пули с бронестеклом, чтобы избежать образования новых осколков в листах «сырого» стекла. Если поликарбонат в составе триплекса отсутствует, то ударная волна, движущаяся перед пулей, разобьет стекла еще до фактического ее соприкосновения с ними и пуля беспрепятственно пройдет через такой «сэндвич». Недостатки бронестекол с поликарбонатной вставкой (равно, как и с любым полимером в составе триплекса): значительный вес композита, особенно по классам 5-6а (достигает 210 кг за м 2); низкая стойкость пластика к абразивному износу; отслоение поликарбоната со временем из-за температурных перепадов.

Другое, перспективное направление в создании прозрачной бронибазируется на ином пр
инципе. Лист прозрачного пластика устанавливается в триплекс все также последним, а первыми монтируются вставки из лейкосапфира, керамического или кварцевого стекла – именно они должны встретить пулю. Лицевой слой триплекса, образованный перечисленными сверхтвердыми материалами, ломает либо плющит пулю, средний слой из термически или химически упрочненного стекла удержит поврежденную внутри стеклянного «сэндвича», а последний, пластиковый слой – погасит ударную волну и импульс от первичных осколков, не позволяя образовываться вторичным осколкам. Для защиты поликарбоната от абразивного износа, на него наносится пленка типа stop shield. Преимущества такого бронированного многослойного стекла – в 3-4 раза меньший вес и толщина, чем у триплекса из «сырого» стекла. Недостаток – высокая стоимость.

Кварцевое стекло. Производится из оксида кремния (кремнезема) природного происхождения (кварцевого песка, горного хрусталя, жильного кварца) или искусственно синтезированной двуокиси кремния. Обладает высокой термостойкостью и светопропусканием, его прочность выше, чем у силикатного стекла (50 H/мм 2 против 9,81 H/мм 2).

Керамическое стекло. Выполняется из оксинитрида алюминия, разработано в США для нужд армии, запатентованное название – ALON. Плотность этого прозрачного материала выше, чем у кварцевого стекла (3,69 г/см 3 против 2,21 г/см 3), прочностные характеристики также высоки (модуль Юнга – 334 ГПа, средний предел напряжения при изгибе – 380 МПа, что практически в 7-9 раз превышает аналогичные показатели стекол из оксида кремния).

Искусственный сапфир (лейкосапфир). Представляет собой монокристалл из оксида алюминия, в составе бронестекла придает триплексу максимальные прочностные свойства из возможных. Некоторые его характеристики: плотность – 3,97 г/см 3 ; средний предел напряжения при изгибе – 742 МПа; модуль Юнга – 344 ГПа. Недостаток лейкосапфира заключается в его значительной стоимости из-за высоких производственных энергозатрат, потребностей в сложной механической обработке и полировке.

Химически упрочненное стекло. «Сырое» силикатное стекло погружают в ванну с водным раствором фтороводородной (плавиковой) кислоты. После химической закалки стекло становится в 3-6 прочнее, его ударная вязкость возрастает шестикратно. Недостаток – прочностные характеристики упрочненного стекла ниже, чем у термически закаленного.

В настоящее время для защиты жилых домов в основном используются многослойные стекла типа "триплекс".

Наша фирма также производит установку многослойных небьющихся стекол в жилые и другие помещения.

Химия - одна из древнейших наук. Она изучает вещества, их соединения, строение, превращения. Первые сведения о химических превращениях люди получили, занимаясь различными ремеслами. Значительный вклад в становление химии внесли алхимики. В поисках философского камня, способного превратить любой металл в золото, они совершили немало научных открытий. История развития химии полна интересных событий и удивительных экспериментов.

Основные правила поведения в химической лаборатории

  • Если вы что-то откупорили, немедленно закупорьте.
  • Если включили, выключите.
  • Если открыли, закройте.
  • Если у вас в руках жидкое - не разлейте, порошкообразное - не рассыпьте, газообразное - не выпустите наружу.
  • Если вы не знаете, как это действует, - не трогайте.

Дороже золота

В 1669 году немецкий алхимик Хенниг Бранд в поисках философского камня решил попробовать синтезировать золото из человеческой мочи. В процессе своих экспериментов с мочой он получил белый порошок, светящийся в темноте. Хенниг принял его за «первичную материю» золота и назвал «светоносец» (что по-гречески произносится как «фосфор»). Когда дальнейшие опыты с этим порошком так и не привели к получению драгоценного металла, алхимик начал продавать новое вещество еще дороже, чем само золото.

Великий химик

В один из дней 1837 года в подвале частного пансиона в Казани раздался оглушительный взрыв. Виновником его оказался 9-летний воспитанник Саша Бутлеров, который пытался изготовить то ли порох, то ли «бенгальские огни». Воспитатель сурово наказал ученика.

Три дня подряд Саша ходил с повешенной на груди табличкой, на которой крупными буквами было написано: «ВЕЛИКИЙ ХИМИК». Впоследствии эти слова стали пророческими - нарушитель дисциплины стал великим русским химиком Александром Михайловичем Бутлеровым, создателем теории химического строения органических веществ, ректором Императорского Казанского университета.

Кто изобрел небьющееся стекло?

В 1903 году французский химик Эдуард Бенедиктус случайно уронил колбу, заполненную нитроцеллюлозой. Стенки колбы покрылись сеткой трещин, но сама она не разбилась. Удивившись такому факту, ученый провел несколько опытов - он делал «сандвичи» из двух стекол и слоя нитрата целлюлозы между ними. При нагревании слой целлюлозы расплавлялся и склеивал стекла между собой. Такой «сандвич» можно было бить молотком - он трескался, но сохранял форму и не давал осколков. В 1909 году Бенедиктус получил патент на безопасное стекло, которое назвал «триплекс».

Примечательно, что первыми на новый материал обратили внимание военные - во время Первой мировой войны из него делали стекла противогазов. И только в 1919 году Генри Форд начал использовать триплекс в производстве лобовых стекол автомобилей.

Царская водка

Царская водка - это смесь концентрированных кислот, очень опасное ядовитое вещество. Имеет желтоватый цвет и запах хлора. В ее состав входят соляная кислота НС1 (один объем) и азотная HNO 3 (три объема). Иногда к ним добавляется серная кислота (H 2 SO 4). Своим названием «Царская водка» обязана уникальному свойству - она растворяет почти все металлы, включая золото и платину, но при этом не растворяет ни керамику, ни стекло.

Когда во время Второй мировой войны немецкие войска оккупировали датскую столицу Копенгаген, венгерский химик Дьердь де Хевеши растворил в царской водке золотые нобелевские медали немецких физиков Макса фон Лауз и Джеймса Франка, не имея другой возможности спрятать их от немецких оккупантов. После войны Хевеши выделил спрятанное в царской водке золото и передал его Шведской королевской академии наук, которая изготовила новые медали и передала их фон Лауз и Франку.

Что надо для изобретения? Многие ответят, что для этого потребуются месяцы и годы исследований и опытов. В классических случаях именно так и происходит. Однако история знает немало случаев, когда важные изобретения совершались абсолютно случайно. Причем речь идет не только о научных, но и вполне бытовых вещах. Расскажем о самых известных из них.

Пенициллин. Открытие пенициллина состоялось в 1928 году. Автором случайного изобретения стал Александр Флеминг, который в это время занимался исследование гриппа. Согласно легенде ученый не был достаточно аккуратным и не утруждал себя частым мытьем лабораторной посуды сразу же после исследований. Так, культуры гриппа могли у него храниться по 2-3 недели в 30-40 чашках одновременно. И вот однажды в одной из чашек Петри ученый обнаружил плесень, которая к его изумлению смогла уничтожить высеянную культуру бактерии стафилококка. Это вызвало интерес Флеминга, оказалось, что плесень, которой была заражена культура, относится к весьма редкому виду. В лабораторию она попала скорее всего из помещения этажом ниже, именно там выращивались образцы плесени, взятые у больных бронхиальной астмой. Флеминг оставил на столе чашку, которой предстояло стать знаменитой, и уехал на отдых. Тогда в Лондоне наступило похолодание, что и создало благоприятные условия для роста плесени. Наступившее затем потепление благоприятствовало росту бактерий. Позже выяснилось. Что именно такое стечение обстоятельств и послужило рождению столь важного открытия. Причем его значимость далеко перешагнула за рамки лишь 20-го века. Ведь пенициллин помог и помогает до сих пор спасать жизни миллионов человек. Люди отдали дань памяти ученому, после смерти Флеминга его похоронили в соборе Святого Павла в Лондоне, поместив в один ряд с самыми известными англичанами. В Греции же в день смерти Флеминга был даже объявлен национальный траур.

Рентгеновские лучи или X-Rays. Автором открытия стал в 1895 году физик Вильгельм Конрад Рентген. Ученый проводил в затемненной комнате опыты, пытаясь понять, смогут ли катодные лучи, открытые лишь недавно, пройти сквозь вакуумную трубку или нет. Изменив форму катода, Рентген случайно увидел, что на химически очищенном экране на расстоянии в несколько фунтов появилось расплывчатое зеленоватое облачко. Создалось впечатление, что слабая вспышка от индукционной катушки смогла отразиться в зеркале. Этот эффект так заинтересовал ученого, что ему он посвятил целых семь недель, практически не выходя из лаборатории. В результате оказалось, что свечение возникает из-за прямых лучей, исходящих от катодно-лучевой трубки. Само же излучение дает тень, и оно не может отклоняться магнитом. Применив эффект на человеке, стало ясно, что кости отбрасывают более плотную тень, нежели мягкие ткани. Это до сих пор используется в рентгеноскопии. В том же году появился и первый рентгеновский снимок. Им стал снимок руки жены ученого, на пальце которой четко выделялось золотое кольцо. Так что первой подопытной стала именно женщина, которую мужчины смогли увидеть насквозь. Тогда об опасности излучения еще ничего не знали - существовали даже фотоателье, где делали одиночные и семейные снимки.

Вулканизированная резина. В 1496 году Колумб привез из Вест-Индии чудную вещь - резиновые шарики. Тогда это казалось волшебной, но малополезной забавой. К тому же каучук имел и свои минусы - он вонял и быстро гнил, а при тепле становился уж слишком липким, сильно затвердевая к тому же на холоде. Неудивительно, что люди долгое время не могли найти применения резине. Лишь спустя 300 лет, в 1839 году эта проблема была решена Чарльзом Гудиром. В своей химической лаборатории ученый пытался смешать каучук с магнезией, азотной кислотой, известью, но все было без толку. Закончилось неудачей и попытка смешать каучук с серой. Но тут совершенно случайно эту смесь уронили на горячую печь. Так и получилась эластичная резина, которая сегодня окружает нас повсюду. Это и автомобильные покрышки, мячи и калоши.

Целлофан. В 1908 году швейцарский химик Жак Бранденбергер, работающий на текстильную промышленность, искал возможности создать такое покрытие кухонных скатертей, чтобы оно было максимально защищено от пятен. Разработанное покрытие в виде жесткой вискозы было слишком жестким для намеченных целей, однако Жак поверил в этот материал, предложив использовать его для упаковки продуктов. Однако первая машина для производства целлофана появилась спустя лишь 10 лет - именно столько времени потребовалось швейцарскому ученому, чтобы воплотить свою идею.

Небьющееся стекло. Сегодня такое сочетание слов не вызывает удивления, а вот в 1903 году все было совсем иначе. Тогда французский ученый Эдуард Бенедиктус уронил себе на ногу пустую стеклянную колбу. Посуда не разбилась и это очень его удивило. Конечно же, стенки покрылись сеткой трещинок, однако форма осталась целой. Ученый постарался выяснить, что же стало причиной такого явления. Оказалось, что до этого в колбе находился раствор коллодия, который представляет собой раствор нитратов целлюлозы в смеси этанола с этиловым эфиром. Хотя жидкость и испарилась, тонкий ее слой остался на стенках сосуда. В это время во Франции получило развитие автомобилестроение. Тогда ветровое стекло делали из обычного стекла, что влекло за собой множество травм водителей. Бенедиктус понял, как его изобретение можно будет использовать в этой области и спасти тем самым множество жизней. Однако стоимость внедрения была столь велика, что его попросту отложили на десятилетия. Лишь спустя десятилетия после I мировой войны, в ходе которой в качестве стекла для противогазов и использовался триплекс, небьющееся стекло получило применение и в автомобилестроении. Пионером стала компания Volvo в 1944 году.

Защитный материал Scotchgard. В 1953 год Патси Шерман, сотрудница корпорации 3М разрабатывала резиновый материал, который должен был успешно выдерживать взаимодействие с авиационным топливом. Но вдруг один неаккуратный лаборант пролил один из экспериментальных составов прямо на ее новые теннисные туфли. Вполне очевидно, что Патси расстроилась, так как она не могла очистить туфли ни спиртом, ни мылом. Однако это неудача лишь подтолкнула женщину к новым исследованиям. И вот, спустя всего год после происшествия, на свет появился препарат Scotchgard, который защищает от загрязнений разные поверхности - от тканей, до автомобилей.

Клейкие листки - мемостикеры. Это случайное изобретение также известно под названием post-it notes. В 1970 году работавший на все ту же корпорацию 3M Спенсер Сильвер пытался разработать суперсильный клей. Однако его результаты удручали - полученная смесь постоянно размазывалась по поверхности бумаги, если же ее пытались приклеить к чему-либо, то спустя некоторое время листик отваливался, не оставляя следов на поверхности. Спустя 4 года другой сотрудник этой же компании, Артур Фрай, певший в церковном хоре, придумал, как улучшить поиск псалмов в книгу. Для этого он вклеивал туда закладки, намазанные именно разработанным ранее составом. Это помогло стикерам долгое время оставаться внутри книги. С 1980 года началась история выпуска post-it notes - одного из наиболее популярных офисных продуктов.

Суперклей. Также это вещество еще именуют Krazy Glue, на самом же деле его правильное название "cyanoacrylate (цианоакрилат)". И его изобретение также стало случайностью. Автором открытия стал доктор Гарри Кувер, который во Время Второй мировой войны в 1942 году искал в своей лаборатории способ сделать пластик для орудийных прицелов прозрачным. На выходе опытов получился цианоакриллат, который никак не решал требуемой задачи. Это вещество быстро твердело и клеилось ко всему подряд, портя при этом ценное лабораторное оборудование. Лишь спустя много лет, в 1958 году ученый понял, что его изобретение можно использовать на благо человечеству. Самой полезной оказалась способность состава моментально заклеивать... человеческие раны! Это спасло жизни многим солдатам во Вьетнаме. С заклеенными чудо-клеем ранами раненых уже можно было транспортировать в госпиталь. В 1959 году состоялась необыкновенная демонстрация клея в Америке. Там ведущего программы подняли в воздухе на склеенных всего каплей состава двух стальных пластинах. Позже в ходе демонстраций в воздух поднимали как телевизоры, так и автомобили.

Застежка-липучка или велкро (velcro). Все началось в 1941 году, когда швейцарский изобретатель Джорж де Местраль выгуливал, как обычно, свою собаку. По возвращении домой оказалось, что и пальто хозяина, и вся шерсть пса были покрыты репейником. Любопытный швейцарец решил рассмотреть под микроскопом, как же удается растению так прочно цепляться. Оказалось, что всему виной - крошечные крючочки, которыми репейник прикреплялся к шерсти практически намертво. Руководствуясь подсмотренным принципом, Джордж создал две ленты с такими же мелкими крючочками, которые цеплялись бы друг за друга. Так и появилась альтернативная застежка! Однако массовое производство полезного изделия наступили лишь спустя 14 лет. Одними из первых такими липучками стали пользоваться космонавты, которые так застегивают скафандры.

Фруктовое мороженное на палочке (popsicle). Автору этого изобретения было всего лишь одиннадцать лет, и звали молодого человека Фрэнк Эпперсон. То, что он открыл, многие назовут одним из самых значимых изобретений XX столетия. Удача улыбнулась мальчишке тогда, когда он растворил содовый порошок в воде - такой напиток был популярен у детей в то время. Почему-то выпить жидкость сразу Фрэнку не удалось, он оставил в стакане палочку для размешивания и оставил его на некоторое время на улице. Погода тогда стояла морозная и смесь быстро застыла. Смешная замороженная штуковина на палочке понравилась мальчику, ведь ее можно было лизать языком, а не пить. Со смехом Фрэнк принялся показывать свое открытие всем. Когда мальчик вырос, он вспомнил об изобретении своего детства. И вот, спустя 18 лет, стартовали продажи фруктового мороженного "Epsicles", имевшего целых 7 вариантов вкуса. Сегодня такой вид лакомства настолько популярен, что только в Америке ежегодно продается более трех миллионов фруктовых мороженных на палочке, типа popsicle.

Мешок для мусора. Человечество получило мешок для отходов только в 1950. Однажды к Гарри Василюку, инженеру и изобретателю, обратился муниципалитет его города с просьбой решить проблему высыпания отходов при загрузке мусоросборочных машин. Василюк долгое время проектировал прибор, работающий по принципу пылесоса. Но тут внезапно его озарила иная идея. Согласно легенде кто-то из его знакомых случайно воскликнул: "Мне нужна сумка для мусора!". Тогда-то Василюк и понял, что для операций с мусором следует использовать всего-навсего одноразовые мешки, которые он предложил делать из полиэтилена. Сначала такие пакеты стали использоваться в госпитали канадского Виннипега. Первые же мешки для мусора для частных лиц появились лишь в 1960-е годы. Надо сказать, что изобретение Василика оказалось очень полезным, ведь ныне одной из глобальных задач человечества является как раз и утилизация мусора. А данное изобретение, хотя и не способствует прямому решению задачи, косвенно все же помогает.

Тележка для супермаркета. Сильван Голдман был владельцем большого продуктового магазина в Оклахома-Сити. И вот он заметил, что покупатели не всегда берут некоторые товары, потому что их просто тяжело нести! Тогда Голдман в 1936 году изобрел первую тележку для покупок. Сам бизнесмен к идее своего изобретения пришел случайно - он увидел, как одна из покупательниц поставила тяжелую сумку на игрушечную машинку, которую сын катил на веревочке. Торговец сначала приделал колеса к обычной корзине, а затем, призвав на помощь механиков, создал и прототип современной тележки. С 1947 года начался массовый выпуск этого устройства. Именно это изобретение позволил появиться на свет такому явлению, как супермаркеты.

Кардиостимулятор. Среди случайных изобретений человечества значатся и приборы. В этом ряду выделяется кардиостимулятор, который помогает сохранять жизни миллионам людей, страдающих от заболеваний сердца. В 1941 году инженер Джон Хопкинс занимался исследованиями гипотермии, по заказу военного флота. Ему была поставлена задача - найти способ для максимального обогрева человека, который долго побывал на морозе или в ледяной воде. Для решения данного вопроса Джон пытался использовать высокочастотное радиоизлучение, которое разогревало бы тело. Однако он обнаружил, что при остановке сердца в результате переохлаждения его можно перезапустить помощью стимуляции электрическими импульсами. Это открытие привело к появлению в 1950 году первого кардиостимулятора. В то время он был громоздким и тяжелым, а его использование иногда даже приводило к образованию у больных еще и ожогов. Второе случайное открытие в данной области принадлежит медику Уилсону Грейтбатчу. Он пытался создать устройство для записи сердечных ритмов. Однажды он случайно вставил в свое устройство не тот резистор и увидел в электрической сети колебания, схожие с ритмом сердца человека. Уже через два года на свет с помощью Грейтбатча появился первый вживляемый кардиостимулятор, подающий искусственные импульсы, стимулирующие сердечную деятельность.

Картофельные чипсы. В 1853 году в городке Саратога, что в штате Нью-Йорк, постоянный, но особо капризный клиент буквально извел персонал одного кафе. Этим человек являлся железнодорожный магнат Корнелиус Вандербильт, он то и постоянно отказывался от предложенного картофеля фри, считая его толстым и влажным. В конце концов повару Джорджу Краму надоело нарезать клубни все тоньше и тоньше, и он решил отомстить или просто подшутить над надоедливым посетителем. В масле было обжарено несколько тонких как вафля ломтиков картофеля и поданы Корнелиусу. Первая реакция брюзги была довольно предсказуемой - теперь ломтики ему показались излишне тонкими, чтобы наколоть их вилкой. Однако попробовав несколько штук, посетитель наконец-то остался доволен. В результате и другие посетители пожелали отведать нового блюда. Вскоре в меню появилось новое блюдо под названием "Саратогские чипсы", а сами чипсы начали свое победоносное шествие по миру.

ЛСД. Случайное открытие диэтиламида d-лизергиновой кислоты привело к целой культурной революции. Мало кто сегодня может оспорить этот факт, ведь галлюциноген, открытый швейцарским ученым Альбертом Хоффманом в 1938 году, во многом способствовал формированию движения хиппи в 60-х. Интерес к данному веществу был довольно велик, оно оказало к тому же огромное влияние на исследования и лечение неврологических заболеваний. Фактически открыл ЛСД в качестве галлюциногена доктор Хоффман, участвуя в фармацевтических исследованиях в швейцарском Базеле. Врачи пытались создать препарат, который облегчал бы боли при родах. При синтезе того, что позже было названо ЛСД, Хоффман первоначально не обнаружил у вещества каких-либо интересных свойств и спрятал его в хранилище. Настоящие же свойства ЛСД были выявлены лишь в апреле 1943 года. Хоффман работал с веществом без перчаток, и некоторое количество его попало в организм через кожу. Когда Альберт ехал домой на велосипеде, он к своему удивлению наблюдал "непрекращающийся поток фантастических картин, необычных форм с насыщенной и калейдоскопической игрой цвета". В 1966 году ЛСД было объявлено на территории США вне закона, вскоре запрет перекинулся и на другие страны, что сильно осложнило изучение галлюциногена. Одним из первых исследователей стал доктор Ричард Альперт, который заявил, что к 1961 году сумел испытать ЛСД на 200 объектах, 85% из которых заявили, что получили самый полезный опыт в своей жизни.

Микроволновая печь. И в данном случае изобретали совсем другой прибор. Так, в 1945 году американский инженер Перси Спенсер создавал магнетроны. Эти приборы должны были генерировать микроволновые радиосигналы для первых радаров. Ведь те сыграли важную роль во Второй Мировой войне. А вот тот факт, что микроволны могут помогать готовить пищу открылся совершенно случайно. Однажды, стоя около работающего магнетрона, Спенсер увидел, что в его кармане растаяла плитка шоколада. Ум изобретателя быстро понял, что виной всему те самые микроволны. Спенсер решил провести эксперименты, пытаясь воздействовать на попкорн и яйцо. Последнее, ожидаемо для нас, современных, взорвалось. Выгода микроволн оказалась налицо, со временем была изготовлена и первая микроволновая печь. На тот момент она весила около 340 килограмма и была размером с большой современный холодильник.

К концу 19 века как наука сформировалась органическая химия. Интересные факты помогут лучше понять окружающий мир и узнать, как делались новые научные открытия.

«Живое» блюдо

Первый интересный факт о химии касается необычной еды. Одно из известных блюд японской кухни - «Одори Дону» - «танцующий кальмар». Многих шокирует вид шевелящего щупальцами кальмара в тарелке. Но не стоит переживать, он не страдает и давно ничего не чувствует. Свежеосвежеванного кальмара помещают в чашу с рисом и перед подачей поливают соевым соусом. Щупальца кальмара начинают сокращаться. Это происходит из-за особого строения нервных волокон, которые на некоторое время после смерти животного вступают в реакцию с ионами натрия, содержащимися в соусе, заставляя мышцы сокращаться.

Случайное открытие

Интересные факты о химии часто касаются открытий, произведенных случайно. Так, в 1903 году Эдуард Бенедиктус, известный французский химик, изобрел небьющееся стекло. Ученый случайно уронил колбу, которая была заполнена нитроцеллюлозой. Он обратил внимание, что колба разбилась, но стекло не разлетелось на куски. Проведя необходимые исследования, химик установил, что подобным образом можно создать противоударное стекло. Так появились первые небьющиеся стекла для автомобилей, которые значительно снизили количество травм при автоавариях.

Живой датчик

Интересные факты про химию повествуют об использовании чувствительности животных для пользы человека. Вплоть до 1986 года шахтеры брали с собой под землю канареек. Дело в том, что эти птицы чрезвычайно чувствительны к рудничным газам, особенно метану и угарному газу. Даже при небольшой концентрации этих веществ в воздухе птица может погибнуть. Шахтеры прислушивались к пению птицы и следили за её самочувствием. Если канарейка проявляет беспокойство или начинает слабеть, это сигнал к тому, что шахту нужно покинуть.

Птица не обязательно погибала от отравления, на свежем воздухе ей быстро становилось лучше. Применялись даже специальные герметичные клетки, которые закрывались при признаках отравления. Даже сегодня не изобретен прибор, чувствующий рудные газы так же тонко, как канарейка.

Резина

Интересный факт о химии: ещё одно случайное изобретение - резина. Чарльз Гудьир, американский ученый, открыл рецепт приготовления резины, которая не плавится в жару и не ломается на морозе. Он случайно разогрел смесь серы и каучука, оставив его на плите. Процесс получения резины был назван вулканизацией.

Пенициллин

Ещё один интересный факт о химии: пенициллин был изобретен случайно. забыл о пробирке с бактериями стафилококка на несколько дней. А когда вспомнил о ней, то обнаружил, что колония погибает. Все дело оказалось в плесени, которая начала разрушать бактерии. Именно из ученый получил первый в мире антибиотик.

Полтергейст

Интересные факты о химии могут опровергать мистические истории. Часто можно услышать о старинных домах, наполненных привидениями. А все дело в устаревшей и плохо работающей системе отопления. Из-за утечки вызывающего отравление, у жителей дома возникают головные боли, а также слуховые и зрительные галлюцинации.

Серые кардиналы среди растений

Химия может объяснять поведение животных и растений. В ходе эволюции многие растения выработали механизмы защиты от травоядных. Чаще всего они растения выделяют яд, но ученые обнаружили и более тонкий метод защиты. Некоторые растения выделяют вещества, привлекающие… хищников! Хищники регулируют численность травоядных и отпугивают их от места произрастания "умных" растений. Такой механизм есть даже у привычных нам растений, таких как томаты и огурцы. Например, гусеница подточила огуречный листок, а запах выделившегося сока привлек птиц.

Защитники белки

Интересные факты: химия и медицина тесно связаны. Во время опытов над мышами вирусологи обнаружили интерферон. Этот белок продуцируется у всех позвоночных животных. Из зараженной вирусом клетки выделяется особый белок - интерферон. Он не обладает противовирусным действием, но контактирует со здоровыми клетками и делает их невосприимчивыми к вирусу.

Запах металла

Мы обычно думаем, что монетки, поручни в общественном транспорте, перила и т. д. пахнут металлом. Вот только этот запах выделяет не металл, а соединения, которые образуются в результате соприкосновения с металлической поверхностью органических веществ, например, человеческого пота. Для того чтобы человек почувствовал характерный запах, нужно совсем немного реагентов.

Строительный материал

Химия изучает белки сравнительно недавно. Они возникли более 4 миллиардов лет назад непостижимым образом. Белки являются строительным материалом для всех живых организмов, иные формы жизни науке неизвестны. Половину сухой массы у большинства живых организмов составляют белки.

В 1767 году заинтересовала природа пузырьков, которые выходят из пива во время брожения. Он собрал газ в чашу с водой, которую попробовал на вкус. Вода оказалась приятной и освежающей. Таким образом, ученый открыл углекислый газ, который сегодня используют для производства газированной воды. Через пять лет он описал более эффективный метод получения этого газа.

Заменитель сахара

Этот интересный факт о химии говорит о том, что многие научные открытия были сделаны практически случайно. Курьезный случай привел к обнаружению свойств сукралозы, современного заменителя сахара. Лесли Хью, профессор из Лондона, изучающий свойства нового вещества трихлорсахароза, дал указание своему помощнику Шашиканту Пхаднису протестировать его (test по-английски). Студент, плохо владеющий английским языком, понял это слово как «taste», что означает попробуй на вкус, и незамедлительно выполнил указание. Сукралоза оказалась очень сладкой.

Ароматизатор

Скатол - это органическое соединение, образующееся в кишечнике животных и человека. Именно это вещество обуславливает характерный запах фекалий. Но если в больших концентрациях скатол имеет запах каловых масс, то в малом количестве это вещество имеет приятный запах, напоминающий сливки или жасмин. Поэтому скатол используется для ароматизации парфюмерии, пищевых продуктов и табачных изделий.

Кот и йод

Интересный факт о химии - в открытии йода принимал непосредственное участие самый обычный кот. Фармацевт и химик Бернар Куртуа обычно обедал в лаборатории, и к нему часто присоединялся кот, любивший сидеть на плече хозяина. После очередной трапезы кот спрыгнул на пол, при этом опрокинув емкости с серной кислотой и суспензией золы водорослей в этаноле, стоявшие у рабочего стола. Жидкости смешались, и в воздух начал подниматься фиолетовый пар, оседавший на предметах мелкими черно-фиолетовыми кристаллами. Так был открыт новый химический элемент.

Профессия недели: химик. 9 фактов из жизни великих учёных

Ответ редакции

День химика — профессиональный праздник работников химической промышленности — отмечается в последнее воскресенье мая в России, Белоруссии, Казахстане, Узбекистане и Украине. В 2014 году праздник выпадает на 25 мая.

АиФ.ru рассказывает о необычных фактах из жизни химиков и случайностях, которые привели к великим открытиям.

Нечаянное открытие

В 1903 году французский химик Эдуард Бенедиктус нечаянно уронил колбу, заполненную нитроцеллюлозой. Стекло треснуло, но не разлетелось на мелкие кусочки.

Бенедиктус применил открытие в производстве лобового стекла для автомобилей. Это был «бутерброд», сделанный из листа нитроцеллюлозы между двумя слоями стекла. Конечно же, стекло при сильном ударе всё равно разбивалось, но осколки оставались держаться на листе из нитроцеллюлозы, вместо того чтобы лететь в лицо пассажирам автомобиля при аварии.

Светящийся профессор

Академик Семён Вольфкович, профессор Московского университета, проводил опыты с фосфором. Газообразный фосфор в ходе работы пропитывал одежду учёного. Поэтому, когда Вольфкович возвращался домой по тёмным улицам, его одежда излучала голубоватое свечение, а из-под ботинок летели искры. Каждый раз за ним собиралась толпа, принимавшая учёного за потустороннее существо, что привело к распространению по Москве слухов о «светящемся монахе».

Из физика в химики

«Отец» ядерной физики Эрнест Резерфорд однажды заявил, что «все науки можно разделить на две группы — на физику и коллекционирование марок». Однако Нобелевскую премию ему вручили по химии «за проведённые им исследования в области распада элементов в химии радиоактивных веществ» (1908 г.). Впоследствии Резерфорд замечал, что из всех превращений, которые ему удалось наблюдать, «самым неожиданным стало собственное превращение из физика в химика».

Открытие антибиотиков

Антибиотики были открыты случайно. Шотландский бактериолог Александр Флеминг не очень любил убирать свой лабораторный стол, что, по счастливой случайности, помогло ему в 1928 году сделать одно из важнейших открытий XX века в медицине.

В отличие от своих аккуратных коллег, очищавших чашки с бактериями сразу после окончания работы с ними, Флеминг не мыл чашки по 2-3 недели, пока его лабораторный стол не оказывался загромождённым. Тогда он принимался за уборку, просматривал чашки одну за другой, чтобы не пропустить что-нибудь интересное. В одной из посудин он обнаружил плесень, которая, к его удивлению, угнетала высеянную бактерию. Так был открыт первый антибиотик — пенициллин.

Помимо лечения больных, Флемминг использовал своё открытие в живописи. Его картины были написаны не маслом или акварелью, а разноцветными штаммами микробов.

Изобретатель резины

Американец Чарльз Гудьир случайно открыл рецепт изготовления резины. Он по ошибке нагрел смесь каучука и серы на кухонной плите (по другой версии, оставил вещество у печи). Так была открыта вулканизация, в процессе которой каучук становится резиной.

Сам Гудьир допускал, что процесс вулканизации был открыт не как результат применения классического научного метода, однако изобретатель утверждал, что это не было и случайностью. Скорее, результатом экспериментальной деятельности и наблюдений.

Неизвестный Менделеев

Известный русский учёный Дмитрий Менделеев был семнадцатым ребёнком в семье. В школе он плохо учился и однажды даже оставался на второй год. На первом курсе института он умудрился по всем предметам, кроме математики, получить неудовлетворительные отметки. Да и по математике он имел всего лишь «удовлетворительно»… Но на старших курсах дело пошло по-другому. Менделеев окончил институт в 1855 году с золотой медалью. Менделеев любил переплетать книги, клеить рамки для портретов, а также изготовлять чемоданы. В Петербурге и в Москве его знали как лучшего в России чемоданных дел мастера. «От самого Менделеева», — говорили купцы. Прославившая учёного периодическая таблица химических элементов, по легенде, приснилась ему во сне. Однако сам учёный говорил: « Я над ней, может быть, двадцать лет думал, а вы думаете: сидел и вдруг… готово» .

Трудности перевода

Заменитель сахара — сукралоза — был открыт случайно. Профессор Лесли Хью дал указание работавшему с ним иностранному студенту испытать (англ. test) полученные в лаборатории хлорированные соединения сахара. Студент плохо говорил по-английски и решил, что его попросили попробовать вещество на вкус (англ. taste). Он нашёл соединение исключительно сладким.

Изобретатель газировки

Английский учёный Джозеф Пристли в 1767 году заинтересовался природой пузырьков, которые выходят на поверхность при брожении пива. Над пивным чаном он поместил чашу с водой, которую затем попробовал на вкус и обнаружил, что она обладает освежающим действием.

Пристли открыл не что иное, как углекислый газ, который и сегодня используется при изготовлении газированных напитков. Через пять лет учёный опубликовал работу, в которой описал более совершенный метод получения углекислого газа путём реакции серной кислоты с мелом.

Великий химик

В один из дней 1837 года в подвале частного пансиона в Казани раздался оглушительный взрыв. Оказалось, что один из воспитанников учреждения, Саша Бутлеров , тайно оборудовал в подвале лабораторию, где проводил химические опыты.

Педагогический совет решил выставить «хулигана» на посмешище, и он был выведен в столовую с повешенной на груди дощечкой, на которой крупными буквами было написано: «Великий химик».

Придумывая эту издевательскую надпись, незадачливые воспитатели Саши не допускали, конечно, и мысли, что она станет пророческой и что заклеймённый ею «нарушитель пансионных правил» станет действительно великим химиком — Александром Михайловичем Бутлеровым .