Основные поверхности нагрева парового котла, назначение. Расчет конвективных поверхностей нагрева

Для обеспечения потребностей бурного роста промышленного и жилищного строительства в 60-е годы в ВТИ совместно с Оргэнергостроем (г. Москва) была разработана серия водотрубных водогрейных котлов типа ПТВМ тепловой мощностью от 34,9 до 209,4 МВт (30…180 Гкал/ч). Они были спроектированы для сжигания природного газа и мазута. Несмотря на выявленные в первые же годы эксплуатации недостатки, эти котлы получили широкое распространение, так как экономические условия того времени позволяли мириться с их низкой эксплуатационной надежностью и экономичностью.

Разработанные позже аналогичные котлы типа КВГМ, устранив ряд выявленных недостатков, сохранили основной из них – конструкцию конвективной поверхности нагрева. В эту конструкцию была заложена идея малой загрязняемости поверхности нагрева за счет эффекта самообдувки, вызванной малым диаметром труб (28 мм) и их плотной компоновкой (зазоры в свету между трубами составляют всего лишь 4 мм). Эта идея получила к тому времени подтверждение в лабораторных условиях и на практике при сжигании в энергетических котлах твердого топлива, особенно дающего на трубах поверхностей нагрева сыпучие отложения. На рассматриваемые водогрейные котлы она была распространена поспешно, без достаточного изучения характера золовых отложений мазута.

Практика показала, что при сжигании мазута предполагавшийся эффект самообдувки полностью отсутствует, а вместо него в низкотемпературной части конвективной поверхности нагрева часто наблюдается занос межтрубного пространства золовыми отложениями мазута. В высокотемпературной части поверхности примененная конструкция трубного пучка привела к другому существенному недостатку. Из-за высоких тепловых потоков, особенно внутри первых рядов труб по ходу продуктов сгорания, часто возникает пристенное кипение воды. Это приводит к интенсивному образованию внутренних отложений, уменьшению проходного сечения и протока воды в трубках. Результат известный – пережог труб. Чем хуже качество воды, тем интенсивнее идет этот процесс и меньше ресурс секций поверхности нагрева.

К настоящему времени общепризнано, что конвективная поверхность нагрева в водогрейных котлах ПТВМ и КВГМ является наиболее слабым звеном. Многие котлостроительные заводы, ряд проектных организаций и ремонтных предприятий имеют свои проекты ее модернизации. Наиболее совершенной следует признать разработку ОАО «Машиностроительный завод «ЗИО-Подольск». Разработчики подошли к решению проблемы комплексно. Кроме увеличения диаметра труб с 28 мм до 38 мм и их поперечного шага в два раза, традиционные гладкостенные трубы заменены на оребренные. Применено мембранное и поперечно-спиральное оребрение. По оценке разработчиков замена в котлах ПТВМ-100 старой конструкции на новую позволит получить экономию топлива до 2,4%, а самое главное – увеличить эксплуатационную надежность и ресурс работы конвективной поверхности в 3 раза.

Ниже приводятся результаты дальнейшего совершенствования конвективной поверхности, направленные на возможность отказа от мембранного оребрения в высокотемпературной части поверхности с целью уменьшения ее металлоемкости. Вместо мембран между трубами вварены короткие дистанционирующие вставки. Они образуют по длине секций три пояса жесткости и поэтому дистанционирующие стойки не требуются. Точно такие же короткие дистанционирующие вставки применены и в низкотемпературной части поверхности из труб с поперечным спиральным оребрением. Они заменили громозкие штампованные стойки. Ранжирование поперечного шага труб и соответственно секций между собой осуществляется гребенками в области поясов жесткости. Гребенки фиксируют только крайние ряды труб каждой секции. Внутри собранной из секций поверхности нагрева ранжирование труб по перечному шагу происходит за счет жесткой конструкции секций.

Вваренные между трубами змеевиков дистанционирующие вставки вместо традиционных стоек применяются более 20 лет. Результат положительный. Дистанционирующие вставки надежно охлаждаются и не вызывают деформации труб. Случаев возникновения на трубах свищей по причине применения вставок за всю многолетнюю практику не зафиксировано.

Отказ от мембранного оребрения труб в высокотемпературной части поверхности нагрева и возврат к гладкотрубной конструкции позволил уменьшить ее металлоемкость практически без изменения тепловосприятия. В первых проектах шаг между поперечно-спиральными ребрами в низкотемпературной части принят 6,5 мм, а в более поздних он сокращен до 5 мм. Практика показывает, что при сжигании в водогрейных котлах только природного газа этот шаг можно еще уменьшить и получить дополнительную экономию топлива.

Представленное здесь техническое решение защищено патентом на полезную модель. Проекты выполняются совместно сотрудниками НПФ «Градиент-С» СГТУ и ОП «Свердловэнергоремонт». Изготовление осуществляется на производственной базе ОП «Свердловэнергоремонт». В период с 2002 по 2010 годы модернизированные конвективные поверхности нагрева для котлов ПТВМ-100 внедрены на Гурзуфской районной котельной (г. Екатеринбург) – 4 котла; ТЭЦ Нижнетагильского металлургического комбината (г. Нижний Тагил) -3 котла; Свердловская ТЭЦ (ОАО «Уралмаш», г. Екатеринбург) – 2 котла; для ПТВМ-180: Саратовская ТЭЦ-5 (г. Саратов) – 2 котла; КВГМ-100 (Ростовская область) – 2 котла.

Замечания со стороны эксплуатации по вновь разработанным и установленным в водогрейных котлах поверхностям нагрева отсутствуют. Подтверждено значительное уменьшение гидравлических и аэродинамических сопротивлений. Котлы легко выходят на номинальную нагрузку и устойчиво работают в этом режиме. Примененные дистанционирующие вставки надежно охлаждаются. Деформаций труб и самих секций в модернизированных поверхностях нагрева не наблюдается. Температура уходящих газов при номинальной заводской теплопроизводительности снизилась на 15 о С у котлов с шагом между поперечно-спиральными ребрами 6,5 мм и на 18 о С у котлов с шагом между ребрами 5 мм.

Испарительные поверхности нагрева: конструкция, особенности теплообмена. Пароперегревательные поверхности нагрева: типы, конструкция, особенности теплообмена. Водяные экономайзеры: типы, конструкция, особенности теплообмена. Воздухоподогреватели: типы, конструкция, особенности теплообмена. Способы организации газовоздушного тракта котла.

Основные поверхности нагрева парового котла, назначение

Испарительные поверхности. Парогенерирующие (испарительные) поверхности нагрева отличаются друг от друга в котлах различных систем, но, как правило, располагаются в основном в топочной камере и воспринимают теплоту излучения. Это -- экранные трубы, а также устанавливаемый на выходе из топки небольших котлов конвективный пучок труб.

Экраны котлов с естественной циркуляцией, работающих под разрежением в топке, выполняются из гладких труб с внутренним диаметром 40--80 мм. Экраны представляют собой ряд параллельно включенных вертикальных подъемных труб, соединенных между собой коллекторами. Зазор между трубами обычно составляет 4--6 мм. Размеры топки и величину поверхности экранов рассчитывают таким образом, чтобы на выходе из топки температура продуктов сгорания не превышала температуру размягчения золы, иначе зола будет прилипать к деталям котла, расположенным за топкой, и забьет («зашлакует») путь для прохода газа.

Пароперегреватели. Пароперегреватель предназначен для повышения температуры пара, поступающего из испарительной системы котла. Его трубы (диаметром 22--54 мм) могут располагаться на стенах или потолке топки и воспринимать теплоту излучением -- радиационный пароперегреватель либо в основном конвекцией -- конвективный пароперегреватель. В этом случае трубы пароперегревателя располагаются в горизонтальном газоходе или в начале конвективной шахты

Водяные экономайзеры, предназначенные для подогрева пита-тельной воды, обычно выполняют из стальных труб диаметром 28--38 мм, согнутых в вертикальные змеевики и скомпонованных в пакеты. Трубы в пакетах располагаются в шахматном порядке довольно плотно: расстояние между осями соседних труб поперек потока дымовых газов составляют 2--2,5 диаметра трубы, а между рядами -- вдоль потока -- 1 -- 1,5. Крепление труб змеевиков и их дистанционирование осуществляются опорными стойками, закрепленными в большинстве случаев на полых (для воздушного охлаждения), изолированных со стороны горячих газов балках каркаса.

В экономайзере котлов высокого давления до 20 % воды может превращаться в пар.

Общее число параллельно работающих труб выбирается исходя из скорости воды не ниже 0,5--1 м/с. Эти скорости обусловлены необходимостью смывания со стенок труб пузырьков воздуха, спо-собствующих коррозии, и предотвращения расслоения пароводяной смеси, которое может привести к перегреву слабо охлаждаемой паром верхней стенки трубы и ее разрыву. Движение воды в экономайзере обязательно восходящее; в этом случае имеющийся в трубах после монтажа (ремонта) воздух легко вытесняется водой.

Число труб в пакете в горизонтальной плоскости выбирается исходя из скорости продуктов сгорания 6--9 м/с. Скорость эта определяется стремлением, с одной стороны, получить высокие коэффициенты теплоотдачи, а с другой -- не допустить чрезмерного эолового износа. Коэффициенты теплопередачи при этих условиях составляют обычно не-сколько десятков Вт/(м2-К). Для удобства ремонта и очистки труб от наружных загрязнений экономайзер разделяют на пакеты высотой 1 -- 1,5м с зазорами между ними до 800 мм.

Наружные загрязнения с поверхности змеевиков удаляются, например, путем периодического включения в работу системы дробеочистки, в которой поток металлической дроби пропускается (падает) сверху вниз через конвективные поверхности нагрева, сбивая налипшие на трубы отложения. Налипание золы может быть следствием выпадения рось! из дымовых газов на относительно холодной поверхности труб, особенно при сжигании сернистых топлив (пары H2SOs конденсируются при более высокой температуре, чем HsO). В теплоэнергетических установках питательная вода перед поступлением в котел обязательно подвергается регенеративному подогреву (см. §6.4), поэтому ни налипания золы, ни наружной коррозии (ржавления) труб вследствие выпадения росы в экономайзерах таких котлов не бывает.

Верхние ряды труб экономайзера при работе котла на твердом топливе даже при относительно невысоких скоростях газов подвержены заметному износу золой. Для его предотвращения на эти трубы крепятся различного рода защитные накладки (обычно сверху вдоль трубы приваривают уголок).

Воздухоподогреватели. Поскольку питательная вода перед эконо-майзером энергетических котлов имеет высокую температуру tn „ после регенеративного нагрева (при р= 10 МПа, например, tn B = 230 °С), глубоко охладить уходящие из котла газы с ее помощью нельзя. Для дальнейшего охлаждения газов после экономайзера ставят воздухо-подогреватель, в котором нагревают воздух, забираемый из атмосферы и идущий затем в топку на горение. При сжигании влажного угля нагретый воздух предварительно используется для его сушки в углеразмольном устройстве и транспортировки полученной пыли в горелку.

По принципу действия воздухоподогреватели разделяются на рекуперативные и регенеративные. Рекуперативные -- это, как правило, стальные трубчатые воздухоподогреватели (диаметр трубок 30--40мм). Схема такого подогревателя приведена на рис. 18.5. Трубки в нем расположены обычно вертикально, внутри них движутся продукты сгорания; воздух омывает их поперечным потоком в несколько ходов, организуемых за счет перепускных воздуховодов (коробов) и промежуточных перегородок.

Газ в трубках движется со скоростью 9--13м/с, воздух между трубками-- вдвое медленнее. Это позволяет иметь примерно равные коэффициенты теплоотдачи с обеих сторон стенки трубы.

Температуру стенок труб воздухоподогревателя во избежание конденсации на них водяных паров из уходящих газов желательно поддерживать выше точки росы. Этого можно достичь предвари-тельным подогревом воздуха в паровом калорифере либо рециркуляцией части горячего воздуха.

Регенеративный воздухоподогреватель котла (рис. 18.6) представляет собой медленно вращающийся (3--5 об/мин) барабан (ротор) с набив-кой (насадкой) из гофрированных тонких стальных листов, заключенный в неподвижный корпус. Секторными плитами корпус разделен на две части -- воздушную и газовую. При вращении ротора набивка попеременно пересекает то газовый, то воздушный поток. Несмотря на то что набивка работает в нестационарном режиме, подогрев идущего сплошным потоком воздуха осуществляется непрерывно без колебаний температуры. Движение газов и воздуха -- противоточное.

Регенеративный воздухоподогреватель отличается компактностью (до 250 м2 поверхности нагрева в 1 м3 набивки); он широко распространен на мощных энергетических котлоагрегатах. Недостатком его являются большие (до 10 %) перетоки воздуха в тракт газов, что ведет к перегрузкам дутьевых вентиляторов и дымососов и увеличению потерь теплоты с уходящими газами.

Все описанные тепловоспринимаю-щие элементы котла (поверхности нагрева) являются типичными теплообменниками, и расчет их ведется по формулам, приведенным в гл. 14. Поверхность нагрева рассчитывается по уравнению теплопередачи

Особенность расчета котлов состоит в том, что его принято осуществлять для 1 кг твердого и жидкого и 1 м3 газообразного топлива. В этом случае Q -- теплота, отданная продуктами сгорания 1 кг (м3) топлива и равна разности энтальпий продуктов сгорания до (Н") и после (Н") рассматриваемой конвективной поверхности, т. е.

Под Вр понимается расчетный расход топлива, т. е. его количество, действительно сгоревшее в топке. Это же количество теплоты передается в данной поверхности рабочему телу (воде, пару, воздуху):

BpQ=D(hвых-hвх)

В этой формуле D -- расход рабочего тела; hвх и hвых -- энтальпии рабочего тела на входе в поверхность нагрева и выходе из нее, рассчитанные, как обычно, на 1 кг рабочего тела.

Классификация котлов

Котельные агрегаты разделяются на паровые, предназначенные для производства водяного пара, и водогрейные, предназначенные для получения горячей воды.

По виду сжигаемого топлива и соответствующего топливного тракта различают котлы для газообразного, жидкого и твердого топлива.

По газовоздушному тракту различают котлы с естественной и уравновешенной тягой и с наддувом. В котле с естественной тягой сопротивление газового тракта преодолевается под действием разности плотностей атмосферного воздуха и газа в дымовой трубе. Если сопротивление газового тракта (так же, как и воздушного) преодолевается с помощью дутьевого вентилятора, то котел работает с наддувом. В котле с уравновешенной тягой давление в топке и начале газохода поддерживается близким к атмосферному совместной работой дутьевого вентилятора и дымососа. В настоящее время стремятся все выпускаемые котлы, в том числе и с уравновешенной тягой, изготовлять газоплотными.

По виду пароводяного тракта различают барабанные (рис. 3.1, а, б )и прямоточные (рис. 3.1, в ) котлы. Во всех типах котлов через экономайзер 1 и пароперегреватель 6 вода и пар проходят однократно. В барабанных котлах многократно циркулирует пароводяная смесь в испарительных поверхностях нагрева 5 (от барабана 2 по водоопускным трубам 3 к коллектору 4 и барабану 2). Причем в котлах с принудительной циркуляцией (рис. 3.1, б ) перед входом воды в испарительные поверхности 5 устанавливают дополнительный насос 8. В прямоточных котлах (рис. 3.1, в ) рабочее тело по всем поверхностям нагрева проходит однократно под действием напора, развиваемого питательным насосом 7.

В котлах с рециркуляцией и комбинированной циркуляцией для увеличения скорости движения воды в некоторых поверхностях нагрева при пуске прямоточного котла или работе на пониженных нагрузках обеспечивают принудительную рециркуляцию воды специальным насосом 8 (рис. 3.1, г ).

По фазовому состоянию выводимого из топки шлака различают котлы с твердым и жидким шлакоудалением. В котлах с твердым шлакоудалением (ТШУ) шлак из топки удаляется в твердом состоянии, а в котлах с жидким шлакоудалением (ЖШУ) – в расплавленном.

Рис. 3.1. Схемы пароводяного тракта котла: а – барабанного с естественной циркуляцией;
б – барабанного с принудительной циркуляцией; в – прямоточного; г – прямоточного
с принудительной циркуляцией: 1 – экономайзер; 2 – барабан котла; 3 – водоопускные трубы;
4 – коллектор экранных труб; 5 – испарительные поверхности нагрева; 6 – пароперегреватель;
7 – питательный насос; 8 – циркуляционный насос



Водогрейные котлы характеризуют по их теплопроизводительности, температуре и давлению подогретой воды, а также по роду металла, из которого он изготовлен.

Водогрейные котлы бывают стальные и чугунные.

Чугунные котлы изготавливают для отопления отдельных жилых и общественных зданий. Их теплопроизводительность не превышает 1 – 1,5 Гкал/ч, давление – 0,3 – 0,4 МПа, температура – 115 о С. Стальные водогрейные котлы большой теплопроизводительности устанавливают в крупных квартальных или районных котельных, которые могут обеспечить теплоснабжение крупных жилых районов.

Паровые котельные агрегаты выпускаются различными по типу, паропроизводительности и параметрам производимого пара.

По паропроизводительности различают котлы малой производительности – 15 – 20 т/ч, средней производительности – от 25 – 35 до 160 – 220 т/ч и большой производительности от 220 – 250 т/ч и выше.

Под номинальной паропроизводительностью понимают наибольшую нагрузку (в т/ч или кг/с) стационарного котла, с которой он может работать в течение длительной эксплуатации при сжигании основного вида топлива или при подводе номинального количества теплоты при номинальных значениях пара и питательной воды с учетом допускаемых отклонений.

Номинальные значения давления и температуры пара – это параметры, которые должны быть обеспечены непосредственно перед паропроводом к потребителю пара при номинальной паропроизводительности котла (а температура также при номинальном давлении и температуре питательной воды).

Номинальная температура питательной воды – это температура воды, которую необходимо обеспечить перед входом в экономайзер или другой подогреватель питательной воды котла (или при их отсутствии – перед входом в барабан) при номинальной паропроизводительности.



По давлению рабочего тела различают котлы низкого (менее 1 МПа), среднего
(1 – 10 МПа), высокого (10 – 25 МПа) и сверхкритического давления (более 25 МПа).

Котельные агрегаты вырабатывают насыщенный или перегретый пар с температурой до 570 °С.

По назначению паровые котлы можно разделить на промышленные, устанавливаемые в производственных, производственно-отопительных и отопительных котельных, и энергетические, устанавливаемые в котельных тепловых электрических станций.

По типу компоновки котлы можно разделить на вертикально-циллиндрические, горизонтальной компоновки (с развитой испарительной поверхностью нагрева) и вертикальной компоновки.

Барабанные паровые котлы

Барабанные котлы широко применяют на ТЭС и в котельных. Наличие одного или нескольких барабанов с фиксированной границей раздела между паром и водой является отличительной чертой этих котлов. Питательная вода в них, как правило, после экономайзера 1 (см. рис. 3.1, а ) подается в барабан 2, где смешивается с котловой водой (водой, заполняющей барабан и экраны). Смесь котловой и питательной воды по опускным необогреваемым трубам 3 из барабана поступает в нижние распределительные коллектора 4, а затем в экраны 5 (испарительные поверхности). В экранах вода получает теплоту Q от продуктов сгорания топлива и закипает. Образующаяся пароводяная смесь поднимается в барабан. Здесь происходит разделение пара и воды. Пар по трубам, соединенным с верхней частью барабана, направляется в перегреватель 6, а вода снова в опускные трубы 3.

В экранах за один проход испаряется лишь часть (от 4 до 25 %) поступающей в них воды. Тем самым обеспечивается достаточно надежное охлаждение труб. Предотвратить накопление солей, осаждающихся при испарении воды на внутренней поверхности труб, удается благодаря непрерывному удалению части котловой воды из котла. Поэтому для питания котла допускается использование воды с относительно большим содержанием растворенных в ней солей.

Замкнутую систему, состоящую из барабана, опускных труб, коллектора и испарительных поверхностей, по которой многократно движется рабочее тело, принято называть контуром циркуляции, а движение воды в нем – циркуляцией. Движение рабочей среды, обусловленное только различием веса столбов воды в опускных трубах и пароводяной смеси в подъемных, называют естественной циркуляцией, а паровой котел – барабанным с естественной циркуляцией. Естественная циркуляция возможна лишь в котлах с давлением, не превышающим 18,5 МПа. При большем давлении из-за малой разности плотностей пароводяной смеси и воды устойчивое движение рабочей среды в циркуляционном контуре обеспечить трудно. Если движение среды в циркуляционном контуре создается насосом 8 (см. рис. 3.1, б ), то циркуляция называется принудительной , а паровой котел – барабанным с принудительной циркуляцией. Принудительная циркуляция позволяет выполнять экраны из труб меньшего диаметра как с подъемным, так и опускным движением среды в них. К недостаткам такой циркуляции следует отнести необходимость установки специальных насосов (циркуляционных), которые имеют сложную конструкцию, и дополнительный расход энергии на их работу.

Простейший барабанный котел, используемый для получения водяного пара, состоит из горизонтального цилиндрического барабана 1 с эллиптическими днищами, на 3/4 объема заполненного водой, и топки 2под ним (рис. 3.2, а ). Стенки барабана, обогреваемые снаружи продуктами горения топлива, играют роль теплообменной поверхности.

С ростом паропроизводительности резко возросли размеры и масса котла. Развитие котлов, направленное на увеличение поверхности нагрева при сохранении водяного объема, шло по двум направлениям. Согласно первому направлению увеличение теплообменной поверхности достигалось благодаря размещению в водном объеме барабана труб, обогреваемых изнутри продуктами сгорания. Так, появились жаротрубные (рис. 3.2, б ), затем дымогарные и, наконец, комбинированные газотрубные котлы. В жаротрубных котлах в водном объеме барабана 1 параллельно его оси размещены одна или несколько жаровых труб 3 большого диаметра (500 – 800 мм), в дымогарных – целый пучок труб 3 малого диаметра. В комбинированных газотрубных котлах (рис. 3.2, в ) в начальной части жаровых труб расположена топка 2, а конвективная поверхность выполнена из дымогарных труб 3. Производительность этих котлов была невелика, ввиду ограниченных возможностей размещения жаровых и дымогарных труб в водяном объеме барабана 1.Их использовали в судовых установках, локомобилях и паровозах, а также для получения пара на собственные нужды предприятия.

Рис. 3.2. Схемы котлов: а – простейшего барабанного; б – жаротрубного; в – комбинированного газотрубного; г – водотрубного; д – вертикально-водотрубного; е – барабанного современной конструкции

Второе направление в развитии котлов связано с заменой одного барабана несколькими, меньшего диаметра, заполненными водой и пароводяной смесью. Увеличение числа барабанов привело сначала к созданию батарейных котлов, а замена части барабанов трубами меньшего диаметра, расположенными в потоке дымовых газов, – к водотрубным котлам. Благодаря большим возможностям увеличения паропроизводительности это направление получило широкое развитие в энергетике. Первые водотрубные котлы имели наклоненные к горизонтали (под углом 10 – 15°) пучки труб 3, которые с помощью камер 4 присоединялись к одному или нескольким горизонтальным барабанам 1 (рис. 3.2, г ). Котлы такой конструкции получили название горизонтально-водотрубных . Среди них особо следует выделить котлы русского конструктора В. Г. Шухова. Прогрессивная идея, связанная с разделением общих камер, барабанов и трубных пучков на однотипные группы (секции) одинаковой длины и тем же числом труб, заложенная в конструкцию, позволила осуществлять сборку котлов разной паропроизводительности из стандартных деталей.
Но такие котлы не могли работать при переменных нагрузках.

Создание вертикально-водотрубных котлов – следующий этап развития котлов. Пучки труб 3, соединяющие верхние и нижние горизонтальные барабаны 1,стали располагать вертикально или под большим углом к горизонту (рис. 3.2, д ). Повысилась надежность циркуляции рабочей среды, обеспечился доступ к концам труб и тем самым упростились процессы вальцовки и очистки труб. Совершенствование конструкции этих котлов, направленное на повышение надежности и эффективности их работы, привело к появлению современной конструкции котла (рис. 3.2, е ):однобарабанного с нижним коллектором 5 небольшого диаметра; опускными трубами 6 и барабаном 1, вынесенными из зоны обогрева за обмуровку котла; полным экранированием топки; конвективными пучками труб с поперечным омыванием продуктами сгорания; предварительным подогревом воздуха 9, воды 8 и перегревом пара 7.

Конструктивная схема современного барабанного котла определяется его мощностью и параметрами пара, видом сжигаемого топлива и характеристиками газовоздушного тракта. Так, с ростом давления меняется соотношение между площадями нагревательных, испарительных и перегревательных поверхностей. Увеличение давления рабочего тела от
р = 4 МПа до р = 17 МПа приводит к уменьшению доли теплоты q, затраченной на испарение воды с 64 до 38,5 %. Доля теплоты, расходуемой на подогрев воды, увеличивается при этом с 16,5 до 26,5 %, а на перегрев пара – с 19,5 до 35 %. Поэтому с повышением давления растут площади нагревательной и перегревательной поверхностей, а площадь испарительной поверхности уменьшается.

В отечественных промышленных и промышленно-отопительных котельных широко распространены котельные агрегаты типа ДКВР (двухбарабанный котел, водотрубный, реконструированный) с номинальной паропроизводительностью 2,5; 4; 6,5; 10 и 20 т/ч, изготовляемые Бийским котельным заводом.

Котлы типа ДКВР (рис. 3.3 и 3.4) изготовляют в основном на рабочее давление пара
14 кгс/см 2 для производства насыщенного пара и с пароперегревателем для производства перегретого пара с температурой 250 °С. Кроме того, котлы паропроизводительностью 6,5 и 10 т/ч изготовляют на давление 24 кгс/см 2 для производства пара, перегретого до 370 °С, а котлы паропроизводительностью 10 т/ч также на давление 40 кгс/см 2 для производства пара, перегретого до 440 °С.

Котлы типа ДКВР выпускают в двух модификациях по длине верхнего барабана.
У котлов паропроизводительностью 2,5; 4,0 и 6,5 т/ч, а также у более ранней модификации котла паропроизводительностью 10 т/ч верхний барабан выполнен значительно более длинным, чем нижний. Барабаны соединены системой гнутых цельнотянутых стальных кипятильных труб наружным диаметром 51×2,5 мм, образующих развитую конвективную поверхность нагрева. Трубы расположены в коридорном порядке и своими концами завальцованы в барабаны. В продольном направлении трубы расположены на расстоянии между осями (шаг) 110, а в поперечном 100 мм.


Пароперегреватель в котлах типа ДКВР выполняют вертикальным змеевиковым из стальных цельнотянутых труб наружным диаметром 32 мм. Его размещают в начале котельного пучка, отделяя от камеры догорания двумя рядами кипятильных труб. Для того чтобы можно было разместить пароперегреватель, часть кипятильных труб не устанавливают. Трубный пучок и экраны в сборе с барабанами, коллекторами и опорной рамой этих котлов вписываются в железнодорожный габарит; это позволяет собирать металлическую часть котла на заводе и доставлять ее на монтажную площадку в собранном виде, что упрощает монтаж.

При установке котлов типа ДКВР с низкотемпературными поверхностями нагрева целесообразно предусматривать только водяной экономайзер либо только воздухоподогреватель, чтобы не усложнять компоновку и эксплуатацию котельного агрегата. Такое решение целесообразно еще и потому, что температура дымовых газов за котлами с развитыми поверхностями нагрева относительно низка и составляет приблизительно 250 – 300 °С, вследствие чего количество теплоты, уносимой дымовыми газами, относительно невелико. Более целесообразно устанавливать водяные экономайзеры, тогда агрегат получается компактным и простым в эксплуатации. При этом предпочтительнее выбирать чугунные ребристые экономайзеры, так как их изготовляют из недефицитного материала и они меньше страдают от коррозии.

Котлы типа ДКВР довольно чувствительны к качеству питательной воды, поэтому вода, используемая для их питания, должна подвергаться умягчению и деаэрации. Работа котельных установок с котлами типа ДКВР легко поддается автоматизации, особенно при сжигании жидкого и газообразного топлив.

Парогенераторы серии ДКВР хорошо компонуются со слоевыми топочными устройствами и первоначально были разработаны для сжигания твердого топлива. Позднее ряд парогенераторов перевели на сжигание жидкого и газообразного топлива. При работе на жидком и газообразном топливе производительность парогенераторов может быть выше номинальной на 30 – 50 % При этом нижняя часть верхнего барабана, расположенная над топочной камерой, должна быть защищена огнеупорным кирпичом или торкретом.

В ЦКТИ была обследована работа большого числа промышленных котельных, в которых эксплуатировались парогенераторы серии ДКВР. В результате обследования было установлено, что 85 % парогенераторов используют газ и мазут. Кроме того, были выявлены недостатки в работе парогенераторов: большие присосы воздуха в конвективную часть поверхности нагрева и водяной экономайзер, недостаточная степень заводской готовности, более низкие эксплуатационные КПД по сравнению с расчетными.

При разработке новой конструкции газомазутных парогенераторов серии ДЕ (рис. 3.5) особое внимание было обращено на увеличение степени заводской готовности парогенераторов в условиях крупносерийного производства, снижение металлоемкости конструкции, приближение эксплуатационных показателей к расчетным.

Во всех типоразмерах серии от 4 до 25 т/ч диаметр верхнего и нижнего барабанов парогенераторов принят равным 1000 мм. Толщина стенок обоих барабанов при давлении 1,37 МПа равна 13 мм. Длина цилиндрической части барабанов в зависимости от производительности изменяется от 2240 мм (парогенератор производительностью 4 т/ч) до 7500 мм (парогенератор производительностью 25 т/ч). В каждом барабане в переднем и заднем днище установлены лазовые затворы, что обеспечивает доступ в барабаны при ремонте.

Топочная камера от конвективной поверхности нагрева отделена газоплотной перегородкой.

Во всех парогенераторах серии предусмотрено двухступенчатое испарение. Во вторую ступень испарения выделена часть труб конвективного пучка. Общим опускным звеном всех контуров первой ступени испарения являются последние (по ходу продуктов сгорания) трубы конвективного пучка. Опускные трубы второй ступени испарения вынесены за пределы газохода.

Парогенератор производительностью 25 т/ч имеет пароперегреватель, обеспечивающий небольшой перегрев пара, до 225 °С.

Котельный агрегат типа ГМ-10 предназначается для производства перегретого пара с давлениями 1,4 и 4 МПа и температурами соответственно 250 и 440 °С. Котел предназначается для работы на природном газе и мазуте и отличается тем, что работает с наддувом, т. е. при избыточном давлении в топке. Это позволяет работать без дымососа.

Во избежание выбивания дымовых газов в окружающую среду котел выполнен с двойной стальной обшивкой. Через пространство, образуемое листами обшивки, проходит воздух, подаваемый дутьевым вентилятором, в результате чего через случайные неплотности в окружающую среду может выбиваться только холодный воздух.

По своей компоновке котел двухбарабанный асимметричный: кипятильный пучок и пароперегреватель размещены рядом с топкой. Топливо и воздух поступают в топку через комбинированные горелки, конструкция которых обеспечивает быстрый переход от сжигания одного вида топлива к сжиганию другого.

Использование: в теплоэнергетике, в частности, при изготовлении парогенераторов. Сущность изобретения: повышение монтажной и ремонтной технологичности обеспечивается тем, что в конвективной поверхности нагрева, содержащей входной 1 и выходной 2 коллекторы, вертикально установленные обогреваемые трубы 3, дистанционирующие трубы 4, расположенные горизонтальными ярусами 5 на прямых вертикальных участках обогреваемых труб 4 и попарно жестко скреплены между собой по периферии конвективной поверхности, причем пара дистанционирующих труб 4 охватывает только один ряд обогреваемых труб 3. 4 ил.

Изобретение относится к теплоэнергетике и может быть использовано в парогенераторостроении. В процессе работы парогенератора, особенно на шлакующемся топливе или высокосернистом мазуте, на вертикальных поверхностях нагрева, размещенных, как правило, в горизонтальном газоходе, отлагается большое количество шлака. Очагами для интенсивной зашлаковки являются места, где уменьшены поперечные шаги между вертикальными трубами из-за выхода их из проектной плоскости (из ранжира). В этих местах резко уменьшается расход и скорость дымовых газов и это еще больше способствует зашлаковке поверхностей нагрева. Кроме того, наружные ранжировки труб, особенно в поперечном направлении движения греющих газов, ухудшают условия очистки обдувочными или другими устройствами. Применяемые в настоящее время различные неохлаждаемые устройства из жаростойких материалов быстро выгорают под воздействием высоких температур и агрессивных составляющих (серы, ванадия) греющих газов. Применение собственных, т.е. включенных параллельно с обогреваемыми трубами поверхности нагрева, дистанционирующих обогреваемых труб приводит к неравномерным условиям их работы, т.к. дистанционирующие трубы обязательно отличаются по длине и конфигурации от основных труб, что снижает надежность работы поверхности нагрева. Известна конструкция конвективной поверхности нагрева, в которой дистанционирование обогреваемых труб осуществляется неохлаждаемыми дистанционирующими планками из жаростойкого чугуна. Например, на котле ТГМП-204 Недостатком этой конструкции является недолговечность дистанционирующих планок, так как в условиях высоких температур газов и агрессивных составляющих продуктов горения топлива они быстро обгорают и разрушаются, что приводит к нарушению дистанций между обогреваемыми трубами поверхности нагрева, способствует заносу их золой и шлаком, ухудшению теплообмена и снижению надежности работы парогенератора. Наиболее близкой к заявленной является конструкция конвективной поверхности нагрева, содержащая входной и выходной коллекторы, вертикально расположенные обогреваемые трубы и горизонтальными ярусами установленные дистанционирующие трубы, охлаждаемые рабочей средой и снабженные шипами, образующими ячейки, в каждой из которых размещается по одной вертикальной трубе. В целом все дистанционирующие трубы, соединенные между собой шипами, образуют горизонтальную жесткую решетку, через которую пропускаются обогреваемые трубы поверхности нагрева Недостатком известной конструкции является сложность монтажа и низкая ремонтопригодность, состоящая в том, что при необходимости замены поврежденной обогреваемой трубы, размещенной в средней части вертикальной поверхности нагрева, совершенно невозможно раздвинуть обогреваемый вертикальные трубы для облегчения доступа к поврежденному месту. В равной мере это относится и к самим дистанционирующим трубам, снабженным шипами. Для доступа к поврежденному месту необходимо резать большое количество неповрежденных труб в доступных для этого местах с последующим восстановлением их. Опыт эксплуатации указанной поверхности на котлах ТГМП-204 подтверждает вышесказанное. Целью изобретения является устранение указанных недостатков, а также повышение монтажной и ремонтной технологичности. Поставленная цель достигается тем, что в конвективной поверхности нагрева, содержащей входной и выходной коллекторы, вертикально установленные обогреваемые трубы и дистанционирующие трубы, расположенные горизонтальными ярусами, дистанционирующие трубы в виде горизонтальных ярусов размещены на прямых вертикальных участках обогреваемых труб, попарно жестко соединенных между собой по периферии конвективной поверхности, причем каждая упомянутая пара охватывает только один ряд обогреваемых труб. Сущность изобретения поясняется чертежами, на которых изображено: на фиг. 1 общий вид конвективной поверхности нагрева, на фиг. 2 разрез по А-А фиг. 1, на фиг. 3 разрез по Б-Б на фиг. 2, на фиг. 4 разрез по В-В фиг. 2. Конвективная поверхность нагрева содержит входной 1 и выходной 2 коллекторы, вертикально установленные обогреваемые трубы 3, дистанционирующие трубы 4, выполненные в виде горизонтальных ярусов 5, размещенных на прямых участках труб 3 по высоте поверхности параллельно движению греющих газов и попарно охватывающих каждый ряд этих труб. Трубы 4 жестко соединены между собой сваркой 6 по периферии поверхности нагрева. Конвективная поверхность нагрева работает следующим образом. При изменении теплового состояния парогенератора дистанционирующие трубы 4 удерживают в одной плоскости каждый ряд обогреваемых труб 3, стремящихся из-за неравномерного обогрева выйти из ранжира. Сохранение ранжировки труб 3 обеспечивает равномерные скорости газов по всей ширине газохода, уменьшает возможность заноса золой его отдельных участков, а также улучшает условия очистки с помощью обдувочных или других приспособлений. Удержание обогреваемых труб 3 в ранжире значительно улучшает условия их осмотра и ремонта.,

Элементы поверхностей нагрева являются главными в котельном агрегате и их исправность в первую очередь определяет экономичность и надежность котельной установки.

Размещение элементов поверхности нагрева современного котла показано на рисунке:

Этот котел имеет П-образную форму. Левая вертикальная камера 2 образует топку, все стены ее покрыты трубами. Расположенные на стенах и потолке трубы, в которых происходит испарение воды, называют экранами . Экранные трубы, а также части пароперегревателя, расположенные на стенах топки, называют радиационными поверхностями нагрева , так как они воспринимают тепло от топочных газов главным образом вследствие радиации или лучеиспускания.

Нижнюю часть 9 топочной камеры обычно называют холодной воронкой. В ней происходит выпадение из топочного факела частиц золы. Охлажденные и затвердевшие частицы золы в виде спекшихся комков (шлака) через устройство 8 удаляются в систему гидрозолоудаления.

Верхняя часть топки переходит в горизонтальный газоход, в котором размещены ширмовый 3 и конвективный 5 пароперегреватели. Боковые стены и потолок горизонтального газохода обычно также покрыты трубами пароперегревателя. Эти элементы пароперегревателя называют полурадиационными , так как они воспринимают тепло от топочных газов как в результате радиации, так и конвекции, т. е. теплообмена, который происходит при соприкосновении горячих газов с трубами.

После горизонтального газохода за поворотной камерой начинается правая вертикальная часть котла, называемая конвективной шахтой. В ней в различной последовательности размещены ступени , ступени воздухоподогревателя, а в некоторых конструкциях и змеевики .

Схема устройства котла зависит от его конструкции и мощности, а также давления пара. В устаревших трех-барабанных котлах низкого и среднего давления вода нагревается и испаряется не только в экранах, но и в кипятильных трубах, расположенных между верхними и нижними барабанами.


По опускному 3 пучку кипятильных труб вода из заднего барабана опускается в нижний барабан; эти трубы играют роль водоопускных труб. Незначительный нагрев этих труб топочными газами не нарушает циркуляции воды в котле, так как при низком и среднем давлениях разница в удельных весах воды и пара большая, что обеспечивает достаточно надежную циркуляцию. Вода в нижние камеры экранов 7 подается из верхних барабанов 2 по наружным необогревяемым водоопускным трубам.

В котлах среднего давления доля тепла, идущего на перегрев пара, сравнительно невелика (менее 20% всего тепла, воспринимаемого котельным агрегатом от дымовых газов), поэтому поверхность нагрева пароперегревателя также невелика и он размещается между пучками кипятильных труб.

В однобарабанных котлах среднего давления более поздних выпусков основная испарительная поверхность размещена на стенах топки в виде экранов 6, а небольшой конвективный пучок 10 выполнен из разведенных с большим шагом труб, которые представляют собой полурадиационную часть котла.

Котлы высокого давления изготовляются обычно с одним барабаном и конвективных пучков не имеют. Вся испарительная поверхность нагрева выполнена в виде экранов, которые питаются водой по наружным необогреваемым водоопускным трубам.

В прямоточных котла х барабан отсутствует.

Вода из экономайзера 3 поступает по подводящим трубам 7 в нижнюю камеру 6, а затем в радиационную часть 5, которая представляет собой испарительные трубы (витки), расположенные по стенам топки. Пройдя через витки, большая часть воды превращается в пар. Полностью испаряется вода в переходной зоне 2, которая располагается в области более низких температур топочных газов. Из переходной зоны пар поступает в пароперегреватель 1.

Таким образом, в прямоточных котлах циркуляция воды с ее возвратным движением отсутствует. Вода и пар проходят по трубам только один раз.

Пароперегревателем называют поверхность нагрева парового котла, в которой происходит перегрев пара до заданной температуры. Современные паровые котлы большой паропроизводительности имеют два пароперегревателя - первичный и вторичный (промежуточный). В первичный пароперегреватель насыщенный пар, имеющий температуру кипящей воды, поступает из барабана котла или переходной зоны прямоточного котла. Во вторичный пароперегреватель пар поступает из для повторного перегрева.

Для перегрева пара в котлах высокого давления затрачивается до 35% тепла, а при наличии вторичного перегрева - до 50% тепла, воспринимаемого котельным агрегатом от топочных газов. В котлах с давлением более 225 ата эта доля тепла возрастает до 65%. В результате поверхности нагрева пароперегревателей значительно возрастают,и в современных котлах их размещают в радиационной, полурадиационной и конвективной частях котла.

На рисунке ниже изображена схема пароперегревателя современного котла.

Пар из барабана 7 направляется в настенные трубные панели радиационной части 2 ж 4, затем в потолочные трубные панели 5. Из пароохладителя 8 пар поступает в ширмы 6, а затем в змеевики 10 конвективной части пароперегревателя. Ширма представляет собой расположенный в одной плоскости пакет U-образных труб, которые жестко скреплены между собой почти без зазора. Пар входит в одну камеру ширмы, проходит по трубам и выходит через вторую камеру. Схема расположения ширм в котле показана на рисунке:

Водяные экономайзеры вместе с воздухоподогревателями обычно располагают в конвективных шахтах. Эти элементы поверхности нагрева называют хвостовыми, так как их располагают последними по пути дымовых газов. Водяные экономайзеры выполняют преимущественно из стальных труб. На котлах низкого и среднего давления устанавливают чугунные экономайзеры, составленные из чугунных ребристых труб. Трубы соединены чугунными отводами (калачами).

Стальные экономайзеры могут быть кипящего и некипящего типа. В экономайзерах кипящего типа часть подогреваемой воды (до 25%) превращается в пар.

Современные котлы, в отличие от тех, которые использовались несколько лет назад, в качестве топлива могут использовать не только газ, уголь, мазут и т.д. В качестве экологически чистого топлива в настоящее время все более часто используют пелетты. Заказать пелетты для Вашего пелеттного котла, Вы сможете здесь — http://maspellet.ru/zakazat-pellety.