В чем отличие днк от рнк. Чем отличается строение молекул днк и рнк

Все мы знаем, что облик человека, некоторые привычки и, даже, заболевания передаются по наследству. Вся эта информация о живом существе закодирована в генах. Так как же эти пресловутые гены выглядят, как они функционируют и где находятся?

Итак, носителем всех генов любого человека или животного является ДНК. Данное соединение было открыто в 1869 году Иоганном Фридрихом Мишером.Химически ДНК – это дезоксирибонуклеиновая кислота. Что же это означает? Каким образом эта кислота несет в себе генетический код всего живого на нашей планете?

Начнем с того, что рассмотрим, где располагается ДНК. В клетке человека имеется множество органоидов, которые выполняют различные функции. ДНК располагается в ядре. Ядро – это маленькая органелла, которая окружена специальной мембраной, и в которой хранится весь генетический материал – ДНК.

Каково строение молекулы ДНК?

Прежде всего, рассмотрим, что представляет собой ДНК. ДНК – это очень длинная молекула, состоящая из структурных элементов – нуклеотидов. Имеется 4 вида нуклеотидов – это аденин (А), тимин (Т), гуанин (Г) и цитозин (Ц). Цепочка нуклеотидов схематически выглядит следующим образом: ГГААТЦТААГ.… Вот такая последовательность нуклеотидов и есть цепочка ДНК.

Впервые структура ДНК была расшифрована в 1953 году Джеймсом Уотсоном и Френсисом Криком.

В одной молекуле ДНК имеется две цепочки нуклеотидов, которые спирально закручены вокруг друг друга. Как же эти нуклеотидные цепочки держатся рядом и закручиваются в спираль? Данный феномен обусловлен свойством комплементарности. Комплементарность означает, что друг напротив друга в двух цепочках могут находиться только определенные нуклеотиды (комплементарные). Так, напротив аденина всегда стоит тимин, а напротив гуанина всегда только цитозин. Таким образом, гуанин комплементарен с цитозином, а аденин – с тимином.Такие пары нуклеотидов, стоящие напротив друг друга в разных цепочках также называются комплементарными.

Схематически можно изобразить следующим образом:

Г - Ц
Т - А
Т - А
Ц - Г

Эти комплементарные пары А - Т и Г - Ц образуют химическую связь между нуклеотидами пары, причем связьмежду Г и Ц более прочная чем между А и Т. Связь образуется строго между комплементарными основаниями, то есть образование связи между не комплементарными Г и А – невозможно.

«Упаковка» ДНК, как цепочка ДНК становится хромосомой?

Почему же эти нуклеотидные цепочки ДНК еще и закручиваются вокруг друг друга? Зачем это нужно? Дело в том, что количество нуклеотидов огромно и нужно очень много места, чтобы разместить такие длинные цепочки. По этой причине происходит спиральное закручивание двух нитей ДНК вокруг друга. Данное явление носит название спирализации. В результате спирализации цепочки ДНК укорачиваются в 5-6 раз.

Некоторые молекулы ДНК активно используются организмом, а другие используются редко. Такие редко используемые молекулы ДНК помимо спирализации подвергается еще более компактной «упаковке». Такая компактная упаковка называется суперспирализацией и укорачивает нить ДНК в 25-30 раз!

Как происходит упаковка спиралей ДНК?

Для суперспирализации используются гистоновые белки , которые имеют вид и структуру стержня или катушки для ниток. На эти «катушки» - гистоновые белки наматываются спирализованные нити ДНК. Таким образом, длинная нить становится очень компактно упакованной и занимает очень мало места.

При необходимости использовать ту или иную молекулу ДНК происходит процесс «раскручивания», то есть нить ДНК «сматывается» с «катушки» - гистонового белка (если была на нее накручена) и раскручивается из спирали в две параллельные цепи. А когда молекула ДНК находится в таком раскрученном состоянии, то с нее можно считать необходимую генетическую информацию. Причем считывание генетической информации происходит только с раскрученных нитей ДНК!

Совокупность суперспирализованных хромосом называется гетерохроматин , а хромосом, доступных для считывания информации – эухроматин .


Что такое гены, какова их связь с ДНК?

Теперь давайте рассмотрим, что же такое гены. Известно, что есть гены, определяющие группу крови, цвет глаз, волос, кожи и множество других свойств нашего организма. Ген – это строго определенный участок ДНК, состоящий из определенного количества нуклеотидов, расположенных в строго определенной комбинации. Расположение в строго определенном участке ДНК означает, что конкретному гену отведено его место, и поменять это место невозможно. Уместно провести такое сравнение: человек живет на определенной улице, в определенном доме и квартире, и самовольно человек не может переселиться в другой дом, квартиру или на другую улицу. Определенное количество нуклеотидов в гене означает, что каждый ген имеет конкретное число нуклеотидов и их не может стать больше или меньше. Например, ген, кодирующий выработку инсулина , состоит из 60 пар нуклеотидов; ген, кодирующий выработку гормона окситоцина – из 370 пар нуклеотидов.

Строгая последовательность нуклеотидов является уникальной для каждого гена и строго определенной. Например, последовательность ААТТААТА – это фрагмент гена, кодирующего выработку инсулина. Для того чтобы получить инсулин, используется именно такая последовательность, для получения, например, адреналина, используется другая комбинация нуклеотидов. Важно понимать, что только определенная комбинация нуклеотидов кодирует определенный «продукт» (адреналин, инсулин и т.д.). Такая вот уникальная комбинация определенного числа нуклеотидов, стоящая на «своем месте» - это и есть ген .

Помимо генов в цепи ДНК расположены, так называемые «некодирующие последовательности». Такие некодирующие последовательности нуклеотидов регулируют работу генов, помогают спирализации хромосом, отмечают точку начала и конца гена. Однако, на сегодняшний день, роль большинства некодирующих последовательностей остается невыясненной.

Что такое хромосома? Половые хромосомы

Совокупность генов индивидуума называется геномом. Естественно, весь геном невозможно уложить в одну ДНК. Геном разбит на 46 пар молекул ДНК. Одна пара молекул ДНК называется хромосома. Так вот именно этих хромосом у человека имеется 46 штук. Каждая хромосома несет строго определенный набор генов, например, в 18 хромосоме заложены гены, кодирующие цвет глаз и т.д.Хромосомы различаются друг от друга по длине и форме. Самые распространенные формы в виде Х или Y, но имеются также и другие. У человека имеются по две хромосомы одинаковой формы, которые называются парными (парами). В связи с такими различиями все парные хромосомы пронумерованы – их имеется 23 пары. Это означает, что имеется пара хромосом №1, пара №2, №3 и т.д. Каждый ген ответственный за определенный признак находится в одной и той же хромосоме. В современных руководствах для специалистов может указываться локализация гена, например, следующим образом: 22 хромосома, длинное плечо.

В чем заключаются различия хромосом?

Как же еще различаются между собой хромосомы? Что означает термин длинное плечо? Возьмем хромосомы формы Х. Пересечение нитей ДНК может происходить строго посередине (Х), а может происходить и не центрально. Когда такое пересечение нитей ДНК происходит не центрально, то относительно точки перекреста одни концы длиннее, другие, соответственно, короче. Такие длинные концы принято называть длинным плечом хромосомы, а короткие – соответственно – коротким плечом. У хромосом формы Y большую часть занимают длинные плечи, а короткие совсем небольшие (на схематичном изображении они даже не указываются).

Размер хромосом колеблется: самыми крупными являются хромосомы пар №1 и №3, самыми маленькими хромосомы пар № 17, №19.

Помимо форм и размеров хромосомы различаются по выполняемым функциям. Из 23 пар, 22 пары являются соматическими и 1 пара – половые. Что это значит? Соматические хромосомы определяют все внешние признаки индивидуума, особенности его поведенческих реакций, наследственный психотип, то есть все черты и особенности каждого конкретного человека. А пара половых хромосом определяет пол человека: мужчина или женщина. Существует две разновидности половых хромосом человека – это Х (икс) и У (игрек). Если они сочетаются как ХХ (икс - икс) – это женщина, а если ХУ (икс - игрек) – перед нами мужчина.

Наследственные болезни и повреждения хромосом

Однако случаются «поломки» генома, тогда у людей выявляются генетические заболевания. Например, когда в 21 паре хромосом вместо двух присутствует три хромосомы, человек рождается с синдромом Дауна.

Существует множество более мелких «поломок» генетического материала, которые не ведут к возникновению болезни, а наоборот, придают хорошие свойства. Все «поломки» генетического материала называются мутациями. Мутации, ведущие к болезням или ухудшению свойств организма, считают отрицательными, а мутации, ведущие к образованию новых полезных свойств, считают положительными.

Однако, применительно к большинству болезней, которыми сегодня страдают люди, передается по наследству не заболевание, а лишь предрасположенность. Например, у отца ребенка сахар усваивается медленно. Это не означает, что ребенок родится с сахарным диабетом , но у ребенка будет иметься предрасположенность. Это означает, если ребенок будет злоупотреблять сладостями и мучными изделиями, то у него разовьется сахарный диабет.

На сегодняшний день развивается так называемая предикативная медицина. В рамках данной медицинской практики у человека выявляются предрасположенности (на основе выявления соответствующих генов), а затем ему даются рекомендации - какой диеты придерживаться, как правильно чередовать режим труда и отдыха, чтобы не заболеть.

Как прочитать информацию, закодированную в ДНК?

А как же можно прочитать информацию, содержащуюся в ДНК? Как использует ее собственный организм? Сама ДНК представляет собой некую матрицу, но не простую, а закодированную. Чтобы прочесть информацию с матрицы ДНК, она сначала переносится на специальный переносчик – РНК. РНК – это химически рибонуклеиновая кислота. Отличается от ДНК тем, что может проходить через мембрану ядра в клетку, а ДНК лишена такой способности (она может находиться только в ядре). Закодированная информация же используется в самой клетке. Итак, РНК – это переносчик кодированной информации из ядра в клетку.

Как происходит синтез РНК, как при помощи РНК синтезируется белок?

Нити ДНК, с которых нужно «считать» информацию, раскручиваются, к ним подходит специальный фермент – «строитель» и синтезирует параллельно нити ДНК комплементарную цепочку РНК. Молекула РНК также состоит из 4 видов нуклеотидов – аденина (А), урацила (У), гуанина (Г) и цитозина (Ц). При этом комплементарными являются следующие пары: аденин – урацил, гуанин – цитозин. Как видно, в отличие от ДНК, в РНК используется урацил вместо тимина. То есть фермент-«строитель» работает следующим образом: если в нити ДНК он видит А, то к нити РНК присоединяет У, если Г – то присоединяет Ц и т.д. Таким образом, с каждого активного гена при транскрипции формируется шаблон – копия РНК, способная проходить через мембрану ядра.

Как происходит синтез белка закодированного определенным геном?

Покинув ядро, РНК попадает в цитоплазму. Уже в цитоплазме РНК может быть, как матрица встроена в специальные ферментные системы (рибосомы), которые могут синтезировать, руководствуясь информацией РНК соответствующую последовательность аминокислот белка. Как известно, молекула белка состоит из аминокислот. Как же рибосоме удается узнать, какую именно аминокислоту надо присоединить к растущей белковой цепи? Делается это на основе триплетного кода. Триплетный код означает, что последовательность в три нуклеотида цепочки РНК (триплет, например, ГГУ) кодируют одну аминокислоту (в данном случае глицин). Каждую аминокислоту кодирует определенный триплет. И так, рибосома «прочитывает» триплет, определяет какую аминокислоту надо присоединить следующей по мере считывания информации в РНК. Когда цепочка аминокислот сформирована, она принимает определенную пространственную форму и становится белком, способным осуществлять возложенные на него ферментные, строительные, гормональные и другие функции.

Белок для любого живого организма является продуктом гена. Именно белками определяются все разнообразные свойства, качества и внешние проявления генов.

В клетках живых организмов присутствуют такие вещества, как нуклеиновые кислоты. Они нужны для того, чтобы хранить, передавать и реализовывать генетическую информацию.
РНК и ДНК имеют некоторые сходства, но при этом важно знать и понимать их различия.
Сначала мы разберем по отдельности обе кислоты, а затем в тезисной форме отразим их схожие и различные черты.

Дезоксирибонуклеиновая кислота

ДНК это биополимер. В основе мономера ДНК – пентоза. Углевод ДНК является исключением из правил, ведь его формула (C5H10O4) отличается от «нормального» углевода тем, что в ней отсутствует один атом кислорода, поэтому этот углевод получил название «дезоксирибоза».

К остатку дезоксиробозы присоединено одно азотистое основание (цитозин, тимин, аденин и гуанин). Полимерная цепь ДНК образуется путем связывания между собой мономеров. Сшиваются между собой соседние «звенья» остатками фосфорной кислоты, образуя фосфодиэфирную 3’-5’ – связь.

ДНК – это двойная антипараллельная правозакрученная спираль. Две цепи соединены водородными связями, которые возникающими между гетероциклическими соединениями. В ДНК комплементарные пары: A-G и C-T.

Уникальность ДНК в том, что она способна создавать дочернюю молекулу (репликация ). Для этого спираль ДНК расходится на две материнские цепи и с помощью ферментов (основной фермент это ДНК-полимераза) на них выстраиваются дочерние цепи, основываясь на правиле комплементарности. В итоге образуется две идентичные друг другу цепи ДНК. Этот процесс обеспечивает безошибочную передачу наследственной информации из поколения в поколение.

Рибонуклеи́новая кислота

РНК имеет ряд отличий от ДНК, однако их строение кардинально не различается. Во-первых, РНК составляют «нормальные» углеводы – рибозы (C5H10O5). Во-вторых, взамен гетероциклического основания тимина в состав РНК входит урацил, лишенный метильной группы.

РНК – одиночная полимерная цепь, которая при благоприятных условиях способна изменять свою конфигурацию и приобретать форму «шпильки», когда ближайшие азотистые основания, комплементарные друг другу, связываются. В РНК следующие основания образуют пары: A-G и U-C. РНК в несколько раз короче спирали ДНК.

Следует упомянуть о типах РНК. Выделяют матричную или информационную РНК (мРНК), транспортную РНК (тРНК), рибосомальную РНК (рРНК), транспортно-матричные РНК (тмРНК) и малые ядерные РНК (мяРНК). Функции их различны, но все они необходимы для жизни. РНК — это основа для биосинтеза белка, поскольку ДНК не присутствует в цитоплазме, где на рибосомах происходит синтез белковых молекул.

Стоит отметить, что процесс синтеза белка начинается с ДНК, где зашифрована информация о конкретном веществе, поскольку ДНК – это источник генной информации. РНК берет свое начало на ДНК, синтезируясь на ней при помощи специального фермента.

Разобрав по отдельности две нуклеиновые кислоты, можно переходить к подведению итогов. Что же объединяет ДНК и РНК и в чем заключается их кардинальное различие?

Сходства ДНК и РНК

  1. ДНК и РНК являются органическими полимерами, мономеры которых – мононуклеотиды.
  2. Углеводы обеих кислот находятся в b-D-рибофуранозовой форме.
  3. «Сшиваются» соседние мономеры в цепях с помощью остатков фосфорной кислоты.
  4. В своем составе содержат гетероциклические основания (два пиримидиновых и два пуриновых).

Различия ДНК и РНК

  1. В основе мономеров дезоксирибонуклеиновой и рибонуклеиновой кислот – углевод – пентоза и рибоза соответственно.
  2. ДНК в своем составе содержит азотистое основание (пиримидиновое основание) – тимин, а РНК – урацил (отсутствует метильная группа).
  3. ДНК – двойная антипараллельная правозакрученная спираль, а РНК – одиночная цепь.
  4. ДНК способна удваиваться, а РНК – нет.
  5. Основные функции ДНК: Хранение, передача и реализация наследственной информации из поколения в поколение.
  6. Основные функции РНК: Хранение генетической информации и синтез белка в клетке.

  7. Молекула ДНК превышает в своих размерах и массе молекулу РНК.

Изначально людям казалось, что фундаментальной основой жизни являются белковые молекулы. Однако, научные исследования позволили выявить тот важный аспект, который отличает живую природу от неживой: нуклеиновые кислоты.

Что такое ДНК?

ДНК (дезоксирибонуклеиновая кислота) – это макромолекула, которая хранит в себе и передает из поколения в поколение наследственную информацию. В клетках же основная функция молекулы ДНК – это сохранение точной информации о строении белков и РНК. У животных и растений молекула ДНК содержится в составе ядра клетки, в хромосомах. Чисто с химической точки зрения молекула ДНК состоит из фосфатной группы и азотистого основания. В пространстве она представлена как две спирально закрученные нити. Азотистые основания – это аденин, гуанин, цитозин и тимин, причем соединяются они между собой только по принципу комплиментарности – гуанин с цитозином, а аденин с тимином. Расположение нуклеотидов в различной последовательности позволяет кодировать различную информацию о типах РНК, участвующих в процессе синтеза белка.

Что такое РНК?

Молекула РНК известна нам под названием «рибонуклеиновая кислота». Как и ДНК, эта макромолекула неотъемлемо содержится в клетках всех живых организмов. Их строение во многом совпадает – РНК, так же как и ДНК, состоит из звеньев – нуклеотидов, которые представлены в виде фосфатной группы, азотистого основания и сахара рибозы. Расположение нуклеотидов в различной последовательности позволяет кодировать индивидуальный генетический код. РНК бывают трёх видов: и-РНК – отвечает за передачу информации, р-РНК – является составляющей рибосом, т-РНК – отвечает за доставку аминокислот к рибосомам. Помимо всего прочего, так называемая матричная РНК используется всеми клеточными организмами для синтеза белка. У отдельных молекул РНК можно отметить собственную ферментативную активность. Проявляется она способностью как бы “разрывать” другие молекулы РНК или же соединять два РНК-фрагмента.РНК так же является составной частью геномов большинства вирусов, у которых она выполняет ту же функцию что и у высших организмов макромолекула ДНК.

Сравнение ДНК и РНК

Итак, мы выяснили, что оба эти понятия относятся к нуклеиновым кислотам с разными функциями: РНК занимается переносом биологической информации, записанной в молекулах ДНК, которая в свою очередь отвечает за сохранение информации и передаёт её по наследству. Молекула РНК такой же полимер, как и ДНК, только более короткий. Кроме того ДНК представляет собой двойную цепь, РНК – это одноцепочная структура.

TheDifference.ru определил, что разница между ДНК и РНК заключается в следующем:

В состав ДНК входят дезоксирибонуклеотиды, в состав РНК – рибонуклеотиды.
Азотистые основания в молекуле ДНК – тимин, аденин, цитозин, гуанин; в РНК вместо тимина участвует урацил.
ДНК является матрицей для транскрипции, она хранит генетическую информацию. РНК участвует в синтезе белка.
У ДНК двойная цепь, закрученная по спирали; у РНК – одинарная.
ДНК есть в ядре, пластидах, митохондриях; РНК – образуется в цитоплазме, в рибосомах, в ядре, собственная РНК есть в пластидах и митохондриях.

Изначально людям казалось, что фундаментальной основой жизни являются белковые молекулы. Однако, научные исследования позволили выявить тот важный аспект, который отличает живую природу от неживой: нуклеиновые кислоты.

Что такое ДНК?

ДНК (дезоксирибонуклеиновая кислота) – это макромолекула, которая хранит в себе и передает из поколения в поколение наследственную информацию. В клетках же основная функция молекулы ДНК – это сохранение точной информации о строении белков и РНК. У животных и растений молекула ДНК содержится в составе ядра клетки, в хромосомах. Чисто с химической точки зрения молекула ДНК состоит из фосфатной группы и азотистого основания. В пространстве она представлена как две спирально закрученные нити. Азотистые основания – это аденин, гуанин, цитозин и тимин, причем соединяются они между собой только по принципу комплиментарности – гуанин с цитозином, а аденин с тимином. Расположение нуклеотидов в различной последовательности позволяет кодировать различную информацию о типах РНК, участвующих в процессе синтеза белка.

Что такое РНК?

Молекула РНК известна нам под названием «рибонуклеиновая кислота». Как и ДНК, эта макромолекула неотъемлемо содержится в клетках всех живых организмов. Их строение во многом совпадает – РНК, так же как и ДНК, состоит из звеньев – нуклеотидов, которые представлены в виде фосфатной группы, азотистого основания и сахара рибозы. Расположение нуклеотидов в различной последовательности позволяет кодировать индивидуальный генетический код. РНК бывают трёх видов: и-РНК – отвечает за передачу информации, р-РНК – является составляющей рибосом, т-РНК – отвечает за доставку аминокислот к рибосомам. Помимо всего прочего, так называемая матричная РНК используется всеми клеточными организмами для синтеза белка. У отдельных молекул РНК можно отметить собственную ферментативную активность. Проявляется она способностью как бы “разрывать” другие молекулы РНК или же соединять два РНК-фрагмента.РНК так же является составной частью геномов большинства вирусов, у которых она выполняет ту же функцию что и у высших организмов макромолекула ДНК.

Сравнение ДНК и РНК

Итак, мы выяснили, что оба эти понятия относятся к нуклеиновым кислотам с разными функциями: РНК занимается переносом биологической информации, записанной в молекулах ДНК, которая в свою очередь отвечает за сохранение информации и передаёт её по наследству. Молекула РНК такой же полимер, как и ДНК, только более короткий. Кроме того ДНК представляет собой двойную цепь, РНК – это одноцепочная структура.

ImGist определил, что разница между ДНК и РНК заключается в следующем:

В состав ДНК входят дезоксирибонуклеотиды, в состав РНК – рибонуклеотиды.
Азотистые основания в молекуле ДНК – тимин, аденин, цитозин, гуанин; в РНК вместо тимина участвует урацил.
ДНК является матрицей для транскрипции, она хранит генетическую информацию. РНК участвует в синтезе белка.
У ДНК двойная цепь, закрученная по спирали; у РНК – одинарная.
ДНК есть в ядре, пластидах, митохондриях; РНК – образуется в цитоплазме, в рибосомах, в ядре, собственная РНК есть в пластидах и митохондриях.

Время, в которое мы живем, отмечено потрясающими переменами, огромным прогрессом, когда люди получают ответы на все новые и новые вопросы. Жизнь стремительно движется вперед, и то, что еще совсем недавно казалось невозможным, начинает претворяться в жизнь. Вполне возможно, что представляется сегодня сюжетом из жанра фантастики, скоро тоже приобретет черты реальности.

Одним из важнейших открытий во второй половине двадцатого столетия стали нуклеиновые кислоты РНК и ДНК, благодаря которым человек приблизился к разгадкам тайн природы.

Нуклеиновые кислоты

Нуклеиновые кислоты - это органические соединения, обладающие высокомолекулярными свойствами. В их состав входят водород, углерод, азот и фосфор.

Они были открыты в 1869 году Ф. Мишером, который исследовал гной. Однако тогда его открытию не придали особого значения. Лишь позже, когда эти кислоты обнаружили во всех животных и растительных клетках, пришло понимание огромной их роли.

Существуют два вида нуклеиновых кислот: РНК и ДНК (рибонуклеиновые и дезоксирибонуклеиновые кислоты). Настоящая статья посвящена рибонуклеиновой кислоте, но для общего понимания рассмотрим также, что собой представляет ДНК.

Что такое

ДНК — это состоящая из двух нитей, которые соединены по закону комплементарности водородными связями азотистых оснований. Длинные цепи закручены в спираль, один виток содержит почти десять нуклеотидов. Диаметр двойной спирали составляет два миллиметра, расстояние между нуклеотидами - около половины нанометра. Длина одной молекулы порой достигает нескольких сантиметров. Длина ДНК ядра человеческой клетки составляет почти два метра.

В структуре ДНК содержится вся генетическая информация. ДНК обладает репликацией, что означает процесс, в ходе которого из одной молекулы образуются две совершенно одинаковые - дочерние.

Как уже было отмечено, цепь складывается из нуклеотидов, состоящих, в свою очередь, из азотистых оснований (аденина, гуанина, тимина и цитозина) и остатка кислоты фосфора. Все нуклеотиды различаются азотистыми основаниями. Водородная связь возникает не между всеми основаниями, аденин, к примеру, может соединяться только с тимином или гуанином. Таким образом, адениловых нуклеотидов в организме столько же, сколько тимидиловых, а число гуаниловых равно цитидиловым (правило Чаргаффа). Получается, что последовательность одной цепочки предопределяет последовательность другой, и цепи как бы зеркально отражают друг друга. Такая закономерность, где нуклеотиды двух цепей располагаются упорядоченно, а также соединяются избирательно, называется принципом комплементарности. Кроме водородных соединений, двойная спираль взаимодействует и гидрофобно.

Две цепи разнонаправлены, то есть расположены в противоположных направлениях. Поэтому напротив трех"-конца одной находится пяти"-конец другой цепи.

Внешне напоминает винтовую лестницу, перилом которой является сахарофосфатный остов, а ступеньками — комплементарные основания азота.

Что такое рибонуклеиновая кислота?

РНК — это нуклеиновая кислота с мономерами, называющимися рибонуклеотидами.

По химическим свойствам она очень похожа на ДНК, так как обе являются полимерами нуклеотидов, представляющих собой фосфолированный N-гликозид, который выстроен на остатке пентозы (пятиуглеродного сахара), с фосфатной группой пятого углеродного атома и основания азота при первом углеродном атоме.

Она представляет собой одну полинуклеотидную цепочку (кроме вирусов), которая намного короче, чем у ДНК.

Один мономер РНК — это остатки следующих веществ:

  • основания азота;
  • пятиуглеродного моносахарида;
  • кислоты фосфора.

РНК имеют пиримидиновые (урацил и цитозин) и пуриновые (аденин, гуанин) основания. Рибоза является моносахаридом нуклеотида РНК.

Отличия РНК и ДНК

Нуклеиновые кислоты отличаются друг от друга следующими свойствами:

  • количество ее в клетке зависит от физиологического состояния, возраста и органной принадлежности;
  • ДНК содержит углевод дезоксирибозу, а РНК — рибозу;
  • азотистое основание у ДНК — тимин, а у РНК — урацил;
  • классы выполняют различные функции, но синтезируются на матрице ДНК;
  • ДНК состоит из двойной спирали, а РНК — из одинарной цепи;
  • для нее нехарактерны действующие у ДНК;
  • в РНК больше минорных оснований;
  • цепи существенно отличаются по длине.

История изучения

Клетка РНК впервые была открыта биохимиком из Германии Р. Альтманом при исследовании дрожжевых клеток. В середине двадцатого века была доказана роль ДНК в генетике. Лишь тогда описали и типы РНК, функции и так далее. До 80-90% массы в клетке приходится на р-РНК, образующих совместно с белками рибосому и участвующих в биосинтезе белка.

В шестидесятых годах прошлого столетия впервые предположили, что должен существовать некий вид, который несет в себе генетическую информацию для синтеза белка. После этого научно установили, что есть такие информационные рибонуклеиновые кислоты, представляющие комплементарные копии генов. Их еще называют матричными РНК.

В декодировании записанной в них информации участвуют так называемые транспортные кислоты.

Позже стали разрабатываться способы выявления последовательности нуклеотидов и устанавливаться структура РНК в пространстве кислоты. Так было обнаружено, что некоторые из них, которые назвали рибозимами, могут расщеплять полирибонуклеотидные цепи. Вследствие этого стали предполагать, что в то время, когда зарождалась жизнь на планете, РНК действовала и без ДНК и белков. При этом все превращения производились с ее участием.

Строение молекулы рибонуклеиновой кислоты

Почти все РНК - это одиночные цепи полинуклеотидов, которые, в свою очередь, состоят из монорибонуклеотидов — пуриновых и пиримидиновых оснований.

Нуклеотиды обозначают начальными буквами оснований:

  • аденина (А), А;
  • гуанина (G), Г;
  • цитозина (С), Ц;
  • урацила (U), У.

Они связаны между собой трех- и пятифосфодиэфирными связями.

Самое разное количество нуклеотидов (от нескольких десятков до десятков тысяч) входит в строение РНК. Они могут формировать вторичную структуру, состоящую в основном из коротких двуцепочных тяжей, которые образовались комплементарными основаниями.

Структура молекулы рибнуклеиновой кислоты

Как уже было сказано, у молекулы имеется однонитевое строение. РНК получает вторичную структуру и форму в результате взаимодействия нуклеотидов между собой. Это полимер, мономером которого является нуклеотид, состоящий из сахара, остатка кислоты фосфора и основания азота. Внешне молекула похожа на одну из цепей ДНК. Нуклеотиды аденин и гуанин, входящие в состав РНК, относятся к пуриновым. Цитозин и урацил являются пиримидиновыми основаниями.

Процесс синтеза

Чтобы молекула РНК синтезировалась, матрицей является молекула ДНК. Бывает, правда, и обратный процесс, когда новые молекулы дезоксирибонуклеиновой кислоты образуются на матрице рибонуклеиновой. Такое встречается при репликации некоторых видов вирусов.

Основой для биосинтеза могут служить также другие молекулы рибонуклеиновой кислоты. В ее транскрипции, которая происходит в ядре клетки, участвуют много ферментов, но самым значимым из них является РНК-полимераза.

Виды

В зависимости от вида РНК, функции ее также отличаются. Существуют несколько видов:

  • информационная и-РНК;
  • рибосомальная р-РНК;
  • транспортная т-РНК;
  • минорная;
  • рибозимы;
  • вирусные.

Информационная рибонуклеиновая кислота

Такие молекулы еще называют матричными. Они составляют в клетке примерно два процента от всего количества. В клетках эукариот они синтезируются в ядрах на ДНК-матрицах, переходя затем в цитоплазму и связываясь с рибосомами. Далее, они становятся матрицами для синтеза белка: к ним присоединяются транспортные РНК, которые несут аминокислоты. Так происходит процесс преобразования информации, которая реализуется в уникальной структуре белка. В некоторых вирусных РНК она к тому же является хромосомой.

Жакоб и Мано являются открывателями этого вида. Не имея жесткой структуры, ее цепь образует изогнутые петли. Не работая, и-РНК собирается в складки и сворачивается в клубок, а в рабочем состоянии разворачивается.

и-РНК несет в себе информацию о последовательности аминокислот в белке, который синтезируется. Каждая аминокислота закодирована в определенном месте при помощи генетических кодов, которым свойственны:

  • триплетность — из четырех мононуклеотидов возможно выстроить шестьдесят четыре кодона (генетического кода);
  • неперекрещиваемость — информация движется в одном направлении;
  • непрерывность — принцип работы сводится к тому, что одна и-РНК — один белок;
  • универсальность — тот или иной вид аминокислоты кодируется у всех живых организмов одинаково;
  • вырожденность — известными являются двадцать аминокислот, а кодонов — шестьдесят один, то есть они кодируются несколькими генетическими кодами.

Рибосомальная рибонуклеиновая кислота

Такие молекулы составляют подавляющее большинство клеточных РНК, а именно от восьмидесяти до девяноста процентов от общего количества. Они соединяются с белками и формируют рибосомы — это органоиды, выполняющие синтез белков.

Рибосомы состоят на шестьдесят пять процентов из р-РНК и на тридцать пять процентов из белка. Эта полинуклеотидная цепь без труда изгибается вместе с белком.

Рибосома состоит из аминокислотного и пептидного участков. Они расположены на контактирующих поверхностях.

Рибосомы свободно передвигаются нужных местах. Они не очень специфичны и могут не только считывать информацию с и-РНК, но и образовывать с ними матрицу.

Транспортная рибонуклеиновая кислота

т-РНК наиболее изучены. Они составляют десять процентов клеточной рибонуклеиновой кислоты. Эти виды РНК связываются с аминокислотами благодаря специальному ферменту и доставляются на рибосомы. При этом аминокислоты переносятся транспортными молекулами. Однако бывает, что аминокислоту кодируют разные кодоны. Тогда переносить их будут несколько транспортных РНК.

Она сворачивается в клубочек, когда неактивна, а функционируя, имеет вид клеверного листа.

В ней различаются следующие участки:

  • акцепторный стебель, имеющий последовательность нуклеотидов АЦЦ;
  • участок, служащий для присоединения к рибосоме;
  • антикодон, кодирующий аминокислоту, которая присоединена к этой т-РНК.

Минорный вид рибонуклеиновой кислоты

Недавно виды РНК пополнились новым классом, так называемыми малыми РНК. Они, скорее всего, являются универсальными регуляторами, которые включают или выключают гены в эмбриональном развитии, а также контролируют процессы внутри клеток.

Рибозимы также недавно выявлены, они активно принимают участие, когда кислота РНК ферментируется, являясь при этом катализатором.

Вирусные виды кислот

Вирус способен содержать либо рибонуклеиновую кислоту, либо дезоксирибонуклеиновую. Поэтому с соответствующими молекулами они называются РНК-содержащими. При попадании в клетку такого вируса происходит обратная транскрипция — на базе рибонуклеиновой кислоты появляются новые ДНК, которые встраиваются в клетки, обеспечивая существование и размножение вируса. В другом случае происходит образование комплиментарной на поступившей РНК. Вирусы белков, жизнедеятельность и размножение идет без ДНК, а лишь на основе информации, содержащейся в РНК вируса.

Репликация

В целях улучшения общего понимания необходимо рассмотреть процесс репликации, в результате которого появляются две идентичные молекулы нуклеиновой кислоты. Так начинается деление клетки.

В ней участвуют ДНК-полимеразы, ДНК-зависимые, РНК-полимеразы и ДНК-лигазы.

Процесс репликации состоит из следующих этапов:

  • деспирализация — происходит последовательное раскручивание материнской ДНК, захватывающей всю молекулу;
  • разрыв водородных связей, при котором цепи расходятся, и появляется репликативная вилка;
  • подстройка дНТФ к освободившимся основаниям материнских цепей;
  • отщепление пирофосфатов от дНТФ молекул и образование фосфорнодиэфирных связей за счет выделяющейся энергии;
  • респирализация.

После образования дочерней молекулы делится ядро, цитоплазма и остальное. Таким образом, образуются две дочерние клетки, полностью получившие всю генетическую информацию.

Кроме этого, кодируется первичная структура белков, которые в клетке синтезируются. ДНК в этом процессе принимает косвенное участие, а не прямое, заключающееся в том, что именно на ДНК происходит синтез, участвующих в образовании белков, РНК. Этот процесс получил название транскрипции.

Транскрипция

Синтез всех молекул происходит во время транскрипции, то есть переписывании генетической информации с определенного оперона ДНК. Процесс в некоторых моментах похож на репликацию, а в других существенно отличается от нее.

Сходствами являются следующие части:

  • начало идет с деспирализации ДНК;
  • происходит разрыв водородных связей между основаниями цепей;
  • к ним комплементарно подстраиваются НТФ;
  • происходит образование водородных связей.

Отличия от репликации:

  • при транскрипции расплетается лишь участок ДНК, соответствующий транскриптону, в то время как при репликации расплетению подвергается вся молекула;
  • при транскрипции подстраивающиеся НТФ содержат рибозу, и вместо тимина урацил;
  • информация списывается лишь с определенного участка;
  • после образования молекулы водородные связи и синтезированная цепь разрываются, а цепь соскальзывает с ДНК.

Для нормального функционирования первичная структура РНК должна состоять только из списанных с экзонов ДНК-участков.

У только что образованных РНК начинается процесс созревания. Молчащие участки вырезаются, а информативные сшиваются, образуя полинуклеотидную цепь. Далее, каждый вид имеет присущие только ему превращения.

В и-РНК происходит присоединение к начальному концу. К конечному участку присоединяется полиаденилат.

В т-РНК модифицируются основания, образуя минорные виды.

У р-РНК также метилируются отдельные основания.

Защищают от разрушения и улучшают транспортировку в цитоплазму белки. РНК в зрелом состоянии с ними соединяются.

Значение дезоксирибонуклеиновых и рибонуклеиновых кислот

Нуклеиновые кислоты имеют огромное значение в жизнедеятельности организмов. В них хранится, переносится в цитоплазму и передается по наследству дочерним клеткам информация о белках, синтезирующихся в каждой клетке. Они присутствуют во всех живых организмах, стабильность этих кислот играет важнейшую роль для нормального функционирования как клеток, так и всего организма. Любые изменения в их строении приведут к клеточным изменениям.