Из каких слоев состоит атмосфера земли. Возмущения в ионосфере

Атмосфера (от греч. atmos — пар и spharia — шар) — воздушная оболочка Земли, вращающаяся вместе с ней. Развитие атмосферы было тесно связано с геологическими и геохимическими процессами, протекающими на нашей планете, а также с деятельностью живых организмов.

Нижняя граница атмосферы совпадает с поверхностью Земли, так как воздух проникает в мельчайшие поры в почве и растворен даже в воде.

Верхняя граница на высоте 2000-3000 км постепенно переходит в космическое пространство.

Благодаря атмосфере, в которой содержится кислород, возможна жизнь на Земле. Атмосферный кислород используется в процессе дыхания человека, животными, растениями.

Если бы не было атмосферы, на Земле была бы такая же тишина, как на Луне. Ведь звук — это колебание частиц воздуха. Голубой цвет неба объясняется тем, что солнечные лучи, проходя сквозь атмосферу, как через линзу, разлагаются на составляющие цвета. При этом рассеиваются больше всего лучи голубого и синего цветов.

Атмосфера задерживает большую часть ультрафиолетового излучения Солнца, которое губительно действует на живые организмы. Также она удерживает у поверхности Земли тепло, не давая нашей планете охлаждаться.

Строение атмосферы

В атмосфере можно выделить несколько слоев, различающихся по и плотности (рис. 1).

Тропосфера

Тропосфера — самый нижний слой атмосферы, толщина которого над полюсами составляет 8-10 км, в умеренных широтах — 10-12 км, а над экватором — 16-18 км.

Рис. 1. Строение атмосферы Земли

Воздух в тропосфере нагревается от земной поверхности, т. е. от суши и воды. Поэтому температура воздуха в этом слое с высотой понижается в среднем на 0,6 °С на каждые 100 м. У верхней границы тропосферы она достигает -55 °С. При этом в районе экватора на верхней границе тропосферы температура воздуха составляет -70 °С, а в районе Северного полюса -65 °С.

В тропосфере сосредоточено около 80 % массы атмосферы, находится почти весь водяной пар, возникают грозы, бури, облака и осадки, а также происходит вертикальное (конвекция) и горизонтальное (ветер) перемещение воздуха.

Можно сказать, что погода в основном формируется в тропосфере.

Стратосфера

Стратосфера — слой атмосферы, расположенный над тропосферой на высоте от 8 до 50 км. Цвет неба в этом слое кажется фиолетовым, что объясняется разреженностью воздуха, из-за которой солнечные лучи почти не рассеиваются.

В стратосфере сосредоточено 20 % массы атмосферы. Воздух в этом слое разрежен, практически нет водяного пара, а потому почти не образуются облака и осадки. Однако в стратосфере наблюдаются устойчивые воздушные течения, скорость которых достигает 300 км/ч.

В этом слое сосредоточен озон (озоновый экран, озоносфера), слой, который поглощает ультрафиолетовые лучи, не пропуская их к Земле и тем самым защищая живые организмы на нашей планете. Благодаря озону температура воздуха на верхней границе стратосферы находится в пределах от -50 до 4-55 °С.

Между мезосферой и стратосферой расположена переходная зона — стратопауза.

Мезосфера

Мезосфера — слой атмосферы, расположенный на высоте 50-80 км. Плотность воздуха здесь в 200 раз меньше, чем у поверхности Земли. Цвет неба в мезосфере кажется черным, в течение дня видны звезды. Температура воздуха снижается до -75 (-90)°С.

На высоте 80 км начинается термосфера. Температура воздуха в этом слое резко повышается до высоты 250 м, а потом становится постоянной: на высоте 150 км она достигает 220-240 °С; на высоте 500-600 км превышает 1500 °С.

В мезосфере и термосфере под действием космических лучей молекулы газов распадаются на заряженные (ионизированные) частицы атомов, поэтому эта часть атмосферы получила название ионосфера — слой очень разреженного воздуха, расположенный на высоте от 50 до 1000 км, состоящий в основном из ионизированных атомов кислорода, молекул окиси азота и свободных электронов. Для этого слоя характерна высокая наэлектризован- ность, и от него, как от зеркала, отражаются длинные и средние радиоволны.

В ионосфере возникают полярные сияния — свечение разреженных газов под влиянием электрически заряженных летящих от Солнца частиц — и наблюдаются резкие колебания магнитного поля.

Экзосфера

Экзосфера — внешний слой атмосферы, расположенный выше 1000 км. Этот слой еще называют сферой рассеивания, так как частицы газов движутся здесь с большой скоростью и могут рассеиваться в космическое пространство.

Состав атмосферы

Атмосфера — это смесь газов, состоящая из азота (78,08 %), кислорода (20,95 %), углекислого газа (0,03 %), аргона (0,93 %), небольшого количества гелия, неона, ксенона, криптона (0,01 %), озона и других газов, но их содержание ничтожно (табл. 1). Современный состав воздуха Земли установился более сотни миллионов лет назад, однако резко возросшая производственная деятельность человека все же привела к его изменению. В настоящее время отмечается увеличение содержания СО 2 примерно на 10-12 %.

Входящие в состав атмосферы газы выполняют различные функциональные роли. Однако основное значение этих газов определяется прежде всего тем, что они очень сильно поглощают лучистую энергию и тем самым оказывают существенное влияние на температурный режим поверхности Земли и атмосферы.

Таблица 1. Химический состав сухого атмосферного воздуха у земной поверхности

Объемная концентрация. %

Молекулярная масса, ед.

Кислород

Углекислый газ

Закись азота

от 0 до 0,00001

Двуокись серы

от 0 до 0,000007 летом;

от 0 до 0,000002 зимой

От 0 ло 0,000002

46,0055/17,03061

Двуокись азога

Окись углерода

Азот, самый распространенный газ в атмосфере, химически мало активен.

Кислород , в отличие от азота, химически очень активный элемент. Специфическая функция кислорода — окисление органического вещества гетеротрофных организмов, горных пород и недоокисленных газов, выбрасываемых в атмосферу вулканами. Без кислорода не было бы разложения мертвого органического вещества.

Роль углекислого газа в атмосфере исключительно велика. Он поступает в атмосферу в результате процессов горения, дыхания живых организмов, гниения и представляет собой, прежде всего, основной строительный материал для создания органического вещества при фотосинтезе. Кроме этого, огромное значение имеет свойство углекислого газа пропускать коротковолновую солнечную радиацию и поглощать часть теплового длинноволнового излучения, что создаст так называемый парниковый эффект, о котором речь пойдет ниже.

Влияние на атмосферные процессы, особенно на тепловой режим стратосферы, оказывает и озон. Этот газ служит естественным поглотителем ультрафиолетового излучения Солнца, а поглощение солнечной радиации ведет к нагреванию воздуха. Средние месячные значения общего содержания озона в атмосфере изменяются в зависимости от широты местности и времени года в пределах 0,23-0,52 см (такова толщина слоя озона при наземных давлении и температуре). Наблюдается увеличение содержания озона от экватора к полюсам и годовой ход с минимумом осенью и максимумом весной.

Характерным свойством атмосферы можно назвать то, что содержание основных газов (азота, кислорода, аргона) с высотой изменяется незначительно: на высоте 65 км в атмосфере содержание азота — 86 %, кислорода — 19, аргона — 0,91, на высоте же 95 км — азота 77, кислорода — 21,3, аргона — 0,82 %. Постоянство состава атмосферного воздуха по вертикали и по горизонтали поддерживается его перемешиванием.

Кроме газов, в воздухе содержатся водяной пар и твердые частицы. Последние могут иметь как естественное, так и искусственное (антропогенное) происхождение. Это цветочная пыльца, крохотные кристаллики соли, дорожная пыль, аэрозольные примеси. Когда в окно проникают солнечные лучи, их можно увидеть невооруженным глазом.

Особенно много твердых частиц в воздухе городов и крупных промышленных центров, где к аэрозолям добавляются выбросы вредных газов, их примесей, образующихся при сжигании топлива.

Концентрация аэрозолей в атмосфере определяет прозрачность воздуха, что сказывается на солнечной радиации, достигающей поверхности Земли. Наиболее крупные аэрозоли — ядра конденсации (от лат.condensatio — уплотнение, сгущение) — способствуют превращению водяного пара в водяные капли.

Значение водяного пара определяется прежде всего тем, что он задерживает длинноволновое тепловое излучение земной поверхности; представляет основное звено больших и малых круговоротов влаги; повышает температуру воздуха при конденсации водяных наров.

Количество водяного пара в атмосфере изменяется во времени и пространстве. Так, концентрация водяного пара у земной поверхности колеблется от 3 % в тропиках до 2-10 (15) % в Антарктиде.

Среднее содержание водяного пара в вертикальном столбе атмосферы в умеренных широтах составляет около 1,6-1,7 см (такую толщину будет иметь слой сконденсированного водяного пара). Сведения относительно водяного пара в различных слоях атмосферы противоречивы. Предполагалось, например, что в диапазоне высот от 20 до 30 км удельная влажность сильно увеличивается с высотой. Однако последующие измерения указывают на большую сухость стратосферы. По-видимому, удельная влажность в стратосфере мало зависит от высоты и составляет 2-4 мг/кг.

Изменчивость содержания водяного пара в тропосфере определяется взаимодействием процессов испарения, конденсации и горизонтального переноса. В результате конденсации водяного пара образуются облака и выпадают атмосферные осадки в виде дождя, града и снега.

Процессы фазовых переходов воды протекают преимущественно в тропосфере, именно поэтому облака в стратосфере (на высотах 20-30 км) и мезосфере (вблизи мезопаузы), получившие название перламутровых и серебристых, наблюдаются сравнительно редко, тогда как тропосферные облака нередко закрывают около 50 % всей земной поверхности.

Количество водяного пара, которое может содержаться в воздухе, зависит от температуры воздуха.

В 1 м 3 воздуха при температуре -20 °С может содержаться не более 1 г воды; при 0 °С — не более 5 г; при +10 °С — не более 9 г; при +30 °С — не более 30 г воды.

Вывод: чем выше температура воздуха, тем больше водяного пара может в нем содержаться.

Воздух может быть насыщенным и не насыщенным водяным паром. Так, если при температуре +30 °С в 1 м 3 воздуха содержится 15 г водяного пара, воздух не насыщен водяным паром; если же 30 г — насыщен.

Абсолютная влажность — это количество водяного пара, содержащегося в 1 м 3 воздуха. Оно выражается в граммах. Например, если говорят «абсолютная влажность равна 15», то это значит, что в 1 м Л содержится 15 г водяного пара.

Относительная влажность воздуха — это отношение (в процентах) фактического содержания водяного пара в 1 м 3 воздуха к тому количеству водяного пара, которое может содержаться в 1 м Л при данной температуре. Например, если по радио во время передачи сводки погоды сообщили, что относительная влажность равна 70 %, это значит, что воздух содержит 70 % того водяного пара, которое он может вместить при данной температуре.

Чем больше относительная влажность воздуха, т. с. чем ближе воздух к состоянию насыщения, тем вероятнее выпадение осадков.

Всегда высокая (до 90 %) относительная влажность воздуха наблюдается в экваториальной зоне, так как там в течение всего года держится высокая температура воздуха и происходит большое испарение с поверхности океанов. Такая же высокая относительная влажность и в полярных районах, но уже потому, что при низких температурах даже небольшое количество водяного пара делает воздух насыщенным или близким к насыщению. В умеренных широтах относительная влажность меняется по сезонам — зимой она выше, летом — ниже.

Особенно низкая относительная влажность воздуха в пустынях: 1 м 1 воздуха там содержит в два-три раза меньше возможного при данной температуре количество водяного пара.

Для измерения относительной влажности пользуются гигрометром (от греч. hygros — влажный и metreco — измеряю).

При охлаждении насыщенный воздух не может удержать в себе прежнего количества водяного пара, он сгущается (конденсируется), превращаясь в капельки тумана. Туман можно наблюдать летом в ясную прохладную ночь.

Облака — это тог же туман, только образуется он не у земной поверхности, а на некоторой высоте. Поднимаясь вверх, воздух охлаждается, и находящийся в нем водяной пар конденсируется. Образовавшиеся мельчайшие капельки воды и составляют облака.

В образовании облаков участвуют и твердые частицы , находящиеся в тропосфере во взвешенном состоянии.

Облака могут иметь различную форму, которая зависит от условий их образования (табл. 14).

Самые низкие и тяжелые облака — слоистые. Они располагаются на высоте 2 км от земной поверхности. На высоте от 2 до8 км можно наблюдать более живописные кучевые облака. Самые высокие и легкие — перистые облака. Они располагаются на высоте от 8 до 18 км над земной поверхностью.

Семейства

Роды облаков

Внешний облик

А. Облака верхнего яруса — выше 6 км

I. Перистые

Нитевидные, волокнистые, белые

II. Перисто-кучевые

Слои и гряды из мелких хлопьев и завитков, белые

III. Перисто-слоистые

Прозрачная белесая вуаль

Б. Облака среднего яруса — выше 2 км

IV. Высококучевые

Пласты и гряды белого и серою цвета

V. Высокослоистые

Ровная пелена молочно-серого цвета

В. Облака нижнего яруса — до 2 км

VI. Слоисто-дождевые

Сплошной бесформенный серый слой

VII. Слоисто-кучевые

Непросвечиваемые слои и гряды серого цвета

VIII. Слоистые

Непросвечиваемая пелена серого цвета

Г. Облака вертикального развития — от нижнего до верхнего яруса

IX. Кучевые

Клубы и купола ярко-бе- лого цвета, при ветре с разорванными краями

X. Кучево-дождевые

Мощные кучевообразные массы темно-свинцового цвета

Охрана атмосферы

Главным источником являются промышленные предприятия и автомобили. В больших городах проблема загазованности главных транспортных магистралей стоит очень остро. Именно поэтому во многих крупных городах мира, в том числе и в нашей стране, введен экологический контроль токсичности выхлопных газов автомобилей. Поданным специалистов, задымленность и запыленность воздуха может наполовину сократить поступление солнечной энергии к земной поверхности, что приведет к изменению природных условий.

Воздушная оболочка, которая окружает нашу планету и вращается вместе с ней, называется атмосферой. Половина всей массы атмосферы сосредоточена в нижних 5 км, а три четверти массы - в нижних 10 км. Выше воздух значительно разрежен, хотя его частицы обнаруживаются на высоте 2000-3000 км над земной поверхностью.

Воздух, которым мы дышим, это смесь газов. Больше всего в нём азота - 78% и кислорода - 21 %. Аргон составляет менее 1 % и 0,03% - углекислый газ. Другие многочисленные газы, например криптон, ксенон, неон, гелий, водород, озон и прочие, составляют тысячные и миллионные доли процента. Воздух содержит также водяной пар, частички различных веществ, бактерии, пыльцу и космическую пыль.

Атмосфера состоит из нескольких слоев. Нижний слой до высоты 10-15 км над поверхностью Земли называется тропосфера. Она нагревается от Земли, поэтому температура воздуха здесь с высотой падает на 6 °С на 1 километр подъёма. В тропосфере находится почти весь водяной пар и образуются практически все облака - прим.. Высота тропосферы над разными широтами планеты неодинакова. Над полюсами она поднимается до 9 км, над умеренными широтами - до 10-12 км, а над экватором - до 15 км. Процессы, происходящие в тропосфере - формирование и перемещение воздушных масс, образование циклонов и антициклонов, появление облаков и выпадение осадков, - определяют погоду и климат у земной поверхности.


Выше тропосферы располагается стратосфера, которая простирается до 50-55 км. Тропосферу и стратосферу разделяет переходный слой тропопауза, толщиной 1-2 км. В стратосфере на высоте около 25 км температура воздуха постепенно начинает расти и на 50 км достигает + 10 +30 °С. Такое повышение температуры связано с тем, что в стратосфере на высотах 25-30 км находится слой озона. У поверхности Земли его содержание в воздухе ничтожно мало, а на больших высотах двухатомные молекулы кислорода поглощают ультрафиолетовую солнечную радиацию, образуя трёхатомные молекулы озона.

Если бы озон располагался в нижних слоях атмосферы, на высоте с нормальным давлением, толщина его слоя была бы всего 3 мм. Но и в таком небольшом количестве он играет очень важную роль: поглощает вредную для живых организмов часть солнечного излучения.

Выше стратосферы примерно до высоты 80 км простирается мезосфера, в которой температура воздуха с высотой падает до нескольких десятков градусов ниже нуля.

Верхняя часть атмосферы характеризуется очень высокими температурами и называется термосферой - прим.. Её разделяют на две части - ионосферу - до высоты около 1000 км, где воздух сильно ионизован, и экзосферу - свыше 1000 км. В ионосфере молекулы атмосферных газов поглощают ультрафиолетовую радиацию Солнца, при этом образуются заряженные атомы и свободные электроны. В ионосфере наблюдаются полярные сияния.

Атмосфера играет очень важную роль в жизни нашей планеты. Она предохраняет Землю от сильного нагрева солнечными лучами днём и от переохлаждения ночью. Большая часть метеоритов сгорает в атмосферных слоях, не долетая до поверхности планеты. Атмосфера содержит кислород, необходимый всем организмам, озоновый экран, защищающий жизнь на Земле от губительной части ультрафиолетовой радиации Солнца.


АТМОСФЕРЫ ПЛАНЕТ СОЛНЕЧНОЙ СИСТЕМЫ

Атмосфера Меркурия так сильно разрежена, что, можно сказать, её практически нет. Воздушная оболочка Венеры состоит из углекислого газа (96%) и азота (около 4%), она очень плотная - атмосферное давление у поверхности планеты почти в 100 раз больше, чем на Земле. Марсианская атмосфера тоже состоит преимущественно из углекислого газа (95%) и азота (2,7%), но её плотность меньше земной примерно в 300 раз, а давление - почти в 100 раз. Видимая поверхность Юпитера на самом деле представляет собой верхний слой водородно-гелиевой атмосферы. Такие же по составу воздушные оболочки Сатурна и Урана. Красивый голубой цвет Урана обусловлен высокой концентрацией метана в верхней части его атмосферы - прим.. У Нептуна, окутанного углеводородной дымкой, выделяют два основных слоя облаков: один состоит из кристаллов замёрзшего метана, а второй, расположенный ниже, содержит аммиак и сероводород.

Изменявшие земную поверхность. Не меньшее значение имела деятельность ветра , переносившего мелкие фракции горных пород на большие расстояния. Существенно влияли на разрушение горных пород колебания температуры и другие атмосферные факторы. Наряду с этим А. защищает поверхность Земли от разрушительного действия падающих метеоритов , большая часть которых сгорает при вхождении в плотные слои атмосферы.

Деятельность живых организмов, оказавшая сильное влияние на развитие А. сама в очень большой степени зависит от атмосферных условий. А. задерживает большую часть ультрафиолетового излучения Солнца , которое губительно действует на многие организмы. Атмосферный кислород используется в процессе дыхания животными и растениями , атмосферная углекислота - в процессе питания растений. Климатические факторы, в особенности термический режим и режим увлажнения, влияют на состояние здоровья и на деятельность человека . Особенно сильно зависит от климатических условий сельское хозяйство . В свою очередь, деятельность человека оказывает всё возрастающее влияние на состав А. и на климатический режим.

Строение атмосферы

Вертикальное распределение температуры в атмосфере и связанная с этим терминология.

Многочисленные наблюдения показывают, что А. имеет четко выраженное слоистое строение (см. рис.). Основные черты слоистой структуры А. определяются в первую очередь особенностями вертикального распределения температуры . В самой нижней части А. - тропосфере , где наблюдается интенсивное турбулентное перемешивание (см. Турбулентность в атмосфере и гидросфере), температура убывает с увеличением высоты, причём уменьшение температуры по вертикали составляет в среднем 6° на 1 км. Высота тропосферы изменяется от 8-10 км в полярных широтах до 16-18 км у экватора. В связи с тем, что плотность воздуха быстро убывает с высотой, в тропосфере сосредоточено около 80% всей массы А. Над тропосферой расположен переходный слой - тропопауза с температурой 190-220 , выше которой начинается стратосфера. В нижней части стратосферы уменьшение температуры с высотой прекращается, и температура остаётся приблизительно постоянной до высоты 25 км - т. н. изотермическая область (нижняя стратосфера); выше температура начинает возрастать - область инверсии (верхняя стратосфера). Температура достигает максимума ~ 270 K на уровне стратопаузы , расположенной на высоте около 55 км. Слой А., находящийся на высотах от 55 до 80 км, где вновь происходит понижение температуры с высотой, получил название мезосферы . Над ней находится переходный слой - мезопауза , выше которой располагается термосфера , где температура, увеличиваясь с высотой, достигает очень больших значений (св. 1000 K). Ещё выше (на высотах ~ 1000 км и более) находится экзосфера , откуда атмосферные газы рассеиваются в мировое пространство за счёт диссипации и где происходит постепенный переход от А. к межпланетному пространству . Обычно все слои А., находящиеся выше тропосферы, называются верхними, хотя иногда к нижним слоям А. относят также стратосферу или её нижняя часть.

Все структурные параметры А. (температура, давление, плотность) обладают значительной пространственно-временной изменчивостью (широтной, годовой, сезонной, суточной и др.). Поэтому данные рис. отражают лишь среднее состояние атмосферы.

Схема строения атмосферы:
1 - уровень моря ; 2 - высшая точка Земли - г. Джомолунгма (Эверест), 8848 м; 3 - кучевые облака хорошей погоды; 4 - мощно-кучевые облака; 5 - ливневые (грозовые) облака; 6 - слоисто-дождевые облака; 7 - перистые облака; 8 - самолёт ; 9 - слой максимальной концентрации озона ; 10 - перламутровые облака ; 11 - стратостат ; 12 - радиозонд ; 1З - метеоры ; 14 - серебристые облака ; 15 - полярные сияния ; 16 - американский самолёт-ракета Х-15; 17, 18, 19 - радиоволны, отражающиеся от ионизованных слоев и возвращающиеся на Землю; 20 - звуковая волна, отражающаяся от тёплого слоя и возвращающаяся на Землю; 21 - первый советский искусственный спутник Земли; 22 - межконтинентальная баллистическая ракета ; 23 - геофизические исследовательские ракеты; 24 - метеорологические спутники; 25 - космические корабли «Союз-4» и «Союз-5»; 26 - космические ракеты, уходящие за пределы атмосферы, а также радиоволна, пронизывающая ионизованные слои и уходящая из атмосферы; 27, 28 - диссипация (ускальзывание) атомов Н и Не; 29 - траектория солнечных протонов Р; 30 - проникновение ультрафиолетовых лучей (длина волны l > 2000 и l < 900).

Слоистая структура атмосферы имеет и много других разнообразных проявлений. Неоднороден по высоте химический состав А. Если на высотах до 90 км, где существует интенсивное перемешивание А., относительный состав постоянных компонент атмосферы остаётся практически неизменным (вся эта толща А. получила название гомосферы), то выше 90 км - в гетеросфере - под влиянием диссоциации молекул атмосферных газов ультрафиолетовым излучением Солнца происходит сильное изменение химического состава А. с высотой. Типичные черты этой части А. - слои озона и собственное свечение атмосферы. Сложная слоистая структура характерна для атмосферного аэрозоля - взвешенных в А. твёрдых частиц земного и космического происхождения. Наиболее часто встречаются аэрозольные слои под тропопаузой и на высоте около 20 км. Слоистым является вертикальное распределение электронов и ионов в А., что выражается в существовании D-, Е- и F-cлоёв ионосферы .

Состав атмосферы

Одна из наиболее оптически активных компонент - атмосферная аэрозоль - взвешенные в воздухе частицы размером от нескольких нм до нескольких десятков мкм, образующиеся при конденсации водяного пара и попадающие в А. с земной поверхности в результате индустриальных загрязнений, вулканических извержений, а также из космоса . Аэрозоль наблюдается как в тропосфере, так и в верхних слоях А. Концентрация аэрозоля быстро убывает с высотой, но на этот ход налагаются многочисленные вторичные максимумы, связанные с существованием аэрозольных слоев.

Верхние слои атмосферы

Выше 20-30 км молекулы А. в результате диссоциации в той или иной степени распадаются на атомы и в А. появляются свободные атомы и новые более сложные молекулы. Несколько выше становятся существенными ионизационные процессы.

Наиболее неустойчива область гетеросферы , где процессы ионизации и диссоциации порождают многочисленные фотохимические реакции, определяющие изменение состава воздуха с высотой. Здесь происходит также и гравитационное разделение газов, выражающееся в постепенном обогащении А. более лёгкими газами по мере увеличения высоты. По данным ракетных измерений, гравитационное разделение нейтральных газов - аргона и азота - наблюдается выше 105-110 км . Основные компоненты А. в слое 100-210 км - молекулярный азот, молекулярный кислород и атомарный кислород (концентрация последнего на уровне 210 км достигает 77 ± 20% от концентрации молекулярного азота).

Верхняя часть термосферы состоит главным образом из атомарного кислорода и азота. На высоте 500 км молекулярный кислород практически отсутствует, но молекулярный азот, относительная концентрация которого сильно уменьшается, всё ещё доминирует над атомарным.

В термосфере важную роль играют приливные движения (см. Приливы и отливы), гравитационные волны, фотохимические процессы, увеличение длины свободного пробега частиц, а также другие факторы. Результаты наблюдений торможения спутников на высотах 200-700 км привели к выводу о наличии взаимосвязи между плотностью, температурой и солнечной активностью , с которой связано существование суточного, полугодового и годового хода структурных параметров. Возможно, что суточные вариации в значительной степени обусловлены атмосферными приливами. В периоды солнечных вспышек температура на высоте 200 км в низких широтах может достигать 1700-1900°C.

Выше 600 км преобладающей компонентой становится гелий , а ещё выше, на высотах 2-20 тыс. км, простирается водородная корона Земли. На этих высотах Земля окружена оболочкой из заряженных частиц, температура которых достигает нескольких десятков тысяч градусов. Здесь располагаются внутренний и внешний радиационные пояса Земли . Внутренний пояс, заполненный главным образом протонами с энергией в сотни Мэв, ограничен высотами 500-1600 км на широтах от экватора до 35-40°. Внешний пояс состоит из электронов с энергиями порядка сотен кэв. За внешним поясом существует «самый внешний пояс», в котором концентрация и потоки электронов значительно выше. Вторжение солнечного корпускулярного излучения (солнечного ветра) в верхние слои А. порождает полярные сияния. Под влиянием этой бомбардировки верхней А. электронами и протонами солнечной короны возбуждается также собственное свечение атмосферы, которое раньше называлось свечением ночного неба . При взаимодействии солнечного ветра с магнитным полем Земли создаётся зона, получившая назв. магнитосферы Земли , куда не проникают потоки солнечной плазмы .

Для верхних слоев А. характерно существование сильных ветров, скорость которых достигает 100-200 м/сек. Скорость и направление ветра в пределах тропосферы, мезосферы и нижней термосферы обладают большой пространственно-временной изменчивостью. Хотя масса верхних слоев А. незначительна по сравнению с массой нижних слоев и энергия атмосферных процессов в высоких слоях сравнительно невелика, по-видимому, существует некоторое влияние высоких слоев А. на погоду и климат в тропосфере.

Радиационный, тепловой и водный балансы атмосферы

Практически единственным источником энергии для всех физических процессов, развивающихся в А., является солнечная радиация. Главная особенность радиационного режима А. - т. н. парниковый эффект: А. слабо поглощает коротковолновую солнечную радиацию (большая её часть достигает земной поверхности), но задерживает длинноволновое (целиком инфракрасное) тепловое излучение земной поверхности, что значительно уменьшает теплоотдачу Земли в космическое пространство и повышает её температуру.

Приходящая в А. солнечная радиация частично поглощается в А. главным образом водяным паром, углекислым газом, озоном и аэрозолями и рассеивается на частицах аэрозоля и на флуктуациях плотности А. Вследствие рассеяния лучистой энергии Солнца в А. наблюдается не только прямая солнечная, но и рассеянная радиация, в совокупности они составляют суммарную радиацию. Достигая земной поверхности, суммарная радиация частично отражается от неё. Величина отражённой радиации определяется отражательной способностью подстилающей поверхности, т. н. альбедо . За счёт поглощённой радиации земная поверхность нагревается и становится источником собственного длинноволнового излучения, направленного к А. В свою очередь, А. также излучает длинноволновую радиацию, направленную к земной поверхности (т. н. противоизлучение А.) ив мировое пространство (т. н. уходящее излучение). Рациональный теплообмен между земной поверхностью и А. определяется эффективным излучением - разностью между собственным излучением поверхности Земли и поглощённым ею противоизлучением А. Разность между коротковолновой радиацией, поглощённой земной поверхностью, и эффективным излучением называется радиационным балансом .

Преобразования энергии солнечной радиации после её поглощения на земной поверхности и в А. составляют тепловой баланс Земли. Главный источник тепла для атмосферы - земная поверхность, поглощающая основную долю солнечной радиации. Поскольку поглощение солнечной радиации в А. меньше потери тепла из А. в мировое пространство длинноволновым излучением, то радиационный расход тепла восполняется притоком тепла к А. от земной поверхности в форме турбулентного теплообмена и приходом тепла в результате конденсации водяного пара в А. Так как итоговая величина конденсации во всей А. равна количеству выпадающих осадков, а также величине испарения с земной поверхности, приход конденсационного тепла в А. численно равен затрате тепла на испарение на поверхности Земли (см. также Водный баланс).

Некоторая часть энергии солнечной радиации затрачивается на поддержание общей циркуляции А. и на другие атмосферные процессы, однако эта часть незначительна по сравнению с основными составляющими теплового баланса.

Движение воздуха

Вследствие большой подвижности атмосферного воздуха на всех высотах А. наблюдаются ветры. Движения воздуха зависят от многих факторов, из которых главный - неравномерность нагрева А. в разных районах земного шара.

Особенно большие контрасты температуры у поверхности Земли существуют между экватором и полюсами из-за различия прихода солнечной энергии на разных широтах. Наряду с этим на распределение температуры влияет расположение континентов и океанов. Из-за высоких теплоёмкости и теплопроводности океанических вод океаны значительно ослабляют колебания температуры, которые возникают в результате изменений прихода солнечной радиации в течение года . В связи с этим в умеренных и высоких широтах температура воздуха над океанами летом заметно ниже, чем над континентами, а зимой - выше.

Неравномерность нагревания атмосферы способствует развитию системы крупномасштабных воздушных течений - т. н. общей циркуляции атмосферы , которая создаёт горизонтальный перенос тепла в А., в результате чего различия в нагревании атмосферного воздуха в отдельных районах заметно сглаживаются. Наряду с этим общая циркуляция осуществляет влагооборот в А., в ходе которого водяной пар переносится с океанов на сушу и происходит увлажнение континентов. Движение воздуха в системе общей циркуляции тесно связано с распределением атмосферного давления и зависит также от вращения Земли (см. Кориолиса сила). На уровне моря распределение давления характеризуется его понижением у экватора, увеличением в субтропиках (пояса высокого давления) и понижением в умеренных и высоких широтах. При этом над материками внетропических широт давление зимой обычно повышено, а летом понижено.

С планетарным распределением давления связана сложная система воздушных течений, некоторые из них сравнительно устойчивы, а другие постоянно изменяются в пространстве и во времени. К устойчивым воздушным течениям относятся пассаты, которые направлены от субтропических широт обоих полушарий к экватору. Сравнительно устойчивы также муссоны - воздушные течения, возникающие между океаном и материком и имеющие сезонный характер. В умеренных широтах преобладают воздушные течения западных направления (с З. на В.). Эти течения включают крупные вихри - циклоны и антициклоны , обычно простирающиеся на сотни и тысячи км. Циклоны наблюдаются и в тропических широтах, где они отличаются меньшими размерами, но особенно большими скоростями ветра, часто достигающими силы урагана (т. н. тропические циклоны). В верхней тропосфере и нижней стратосфере встречаются сравнительно узкие (в сотни км шириной) струйные течения , имеющие резко очерченные границы, в пределах которых ветер достигает громадных скоростей - до 100-150 м/сек. Наблюдения показывают, что особенности атмосферные циркуляции в нижней части стратосферы определяются процессами в тропосфере.

В верхней половине стратосферы, где наблюдается рост температуры с высотой, скорость ветра возрастает с высотой, причём летом доминируют ветры восточных направлений, а зимой - западных. Циркуляция здесь определяется стратосферным источником тепла, существование которого связано с интенсивным поглощением озоном ультрафиолетовой солнечной радиации.

В нижней части мезосферы в умеренных широтах скорость зимнего западного переноса возрастает до максимальных значений - около 80 м/сек, а летнего восточного переноса - до 60 м/сек на уровне порядка 70 км. Исследования последних лет ясно показали, что особенности поля температуры в мезосфере нельзя объяснить только влиянием радиационных факторов. Главное значение имеют динамические факторы (в частности, разогревание или охлаждение при опускании или подъёме воздуха), а также возможны источники тепла, возникающие в результате фотохимических реакций (например, рекомбинации атомарного кислорода).

Над холодным слоем мезопаузы (в термосфере) температура воздуха начинает быстро возрастать с высотой. Во многих отношениях эта область А. подобна нижней половине стратосферы. Вероятно, циркуляция в нижней части термосферы определяется процессами в мезосфере, а динамика верхних слоев термосферы обусловлена поглощением здесь солнечной радиации. Однако исследовать атмосферного движения на этих высотах трудно вследствие их значительной сложности. Большое значение приобретают в термосфере приливные движения (главным образом солнечные полусуточные и суточные приливы), под влиянием которых скорость ветра на высотах более 80 км может достигать 100-120 м/сек. Характерная черта атмосферных приливов - их сильная изменчивость в зависимости от широты, времени года, высоты над уровнем моря и времени суток. В термосфере наблюдаются также значительные изменения скорости ветра с высотой (главным образом вблизи уровня 100 км), приписываемые влиянию гравитационных волн. Расположенная в диапазоне высот 100-110 км т. н. турбопауза резко отделяет находящуюся выше область от зоны интенсивного турбулентного перемешивания.

Наряду с воздушными течениями больших масштабов, в нижних слоях атмосферы наблюдаются многочисленные местные циркуляции воздуха (бриз , бора , горно-долинные ветры и др.; см. Ветры местные). Во всех воздушных течениях обычно отмечаются пульсации ветра, соответствующие перемещению воздушных вихрей средних и малых размеров. Такие пульсации связаны с турбулентностью атмосферы, которая существенно влияет на многие атмосферные процессы.

Климат и погода

Различия в количестве солнечной радиации, приходящей на разные широты земной поверхности, и сложность её строения, включая распределение океанов, континентов и крупнейших горных систем, определяют разнообразие климатов Земли (см. Климат).

Литература

  • Метеорология и гидрология за 50 лет Советской власти, под ред. Е. К. Федорова, Л., 1967;
  • Хргиан А. Х., Физика атмосферы, 2 изд., М., 1958;
  • Зверев А. С., Синоптическая метеорология и основы предвычисления погоды, Л., 1968;
  • Хромов С. П., Метеорология и климатология для географических факультетов, Л., 1964;
  • Тверской П. Н., Курс метеорологии, Л., 1962;
  • Матвеев Л. Т., Основы общей метеорологии. Физика атмосферы, Л., 1965;
  • Будыко М. И., Тепловой баланс земной поверхности, Л., 1956;
  • Кондратьев К. Я., Актинометрия , Л., 1965;
  • Хвостиков И. А., Высокие слои атмосферы, Л., 1964;
  • Мороз В. И., Физика планет, М., 1967;
  • Тверской П. Н., Атмосферное электричество, Л., 1949;
  • Шишкин Н. С., Облака, осадки и грозовое электричество, М., 1964;
  • Озон в земной атмосфере, под ред. Г. П. Гущина, Л., 1966;
  • Имянитов И. М., Чубарина Е. В., Электричество свободной атмосферы, Л., 1965.

М. И. Будыко, К. Я. Кондратьев.

Эта статья или раздел использует текст

Атмосферный воздух состоит из азота (77,99%), кислорода (21%), инертных газов (1%) и углекислого газа (0,01%). Доля углекислого газа со временем возрастает из-за того, что в атмосферу выделяются продукты горения топлива, а, кроме того, уменьшается площадь лесов, которые поглощают углекислый газ и выделяют кислород.

В атмосфере также находится незначительное количество озона, который сконцентрирован на высоте около 25-30 км и образует так называемый озоновый слой. Этот слой создает барьер для солнечного ультрафиолетового излучения, опасного для живых организмов Земли.

Кроме этого в атмосфере находится водяной пар и различные примеси — частички пыли, вулканический пепел, сажа и прочее. Концентрация примесей выше у поверхности земли и в определенных районах: над большими городами, пустынями.

Тропосфера — нижний , в нем находится большая часть воздуха и . Высота этого слоя неодинакова: от 8-10 км у тропиков до 16-18 у экватора. в тропосфере понижается с подъемом: на 6°С на каждый километр. В тропосфере формируется погода, образуются ветра, осадки, облака, циклоны и антициклоны.

Следующий слой атмосферы — стратосфера . Воздух в ней значительно более разрежен, в ней значительно меньше водяных паров. Температура в нижней части стратосферы — -60 — -80°С и падает с увеличением высоты. Именно в стратосфере находится озоновый слой. Для стратосферы характерны большие скорости ветра (до 80-100 м/сек).

Мезосфера — средний слой атмосферы, лежащий над стратосферой на высотах от 50 до S0-S5 км. Мезосфера характеризуется понижением средней температуры с высотой от 0° С на нижней границе до -90°С у верхней границы. Близ верхней границы мезосферы наблюдаются серебристые облака, освещаемые солнцем в ночное время. Давление воздуха на верхней границе мезосферы в 200 раз меньше, чем у земной поверхности.

Термосфера — расположена выше мезосферы, на высотах от SO до 400- 500 км, в ней температура сначала медленно, а потом быстро вновь начинает расти. Причиной является поглощение ультрафиолетового излучения Солнца на высотах 150-300 км. В термосфере температура непрерывно растет до высоты около 400 км, где она достигает 700 — 1500° С (в зависимости от солнечной активности). Под действием ультрафиолетовой и рентгеновской и космического излучения происходит также ионизация воздуха («полярные сияния»). Основные области ионосферы лежат внутри термосферы.

Экзосфера — внешний, наиболее разрежённый слой атмосферы, она начинается на высотах 450-ООО км, а её верхняя граница находится на расстоянии нескольких тысяч км от земной поверхности, где концентрация частиц становится такой же, как в межпланетном пространстве. Экзосфера состоит из ионизированного газа (плазмы); нижняя и средняя части экзосферы в основном состоят из кислорода и азота; с увеличением же высоты быстро растет относительная концентрация лёгких газов, особенно ионизированного водорода. Температура в экзосфере 1300-3000° С; она слабо растет с высотой. В экзосфере в основном расположены радиационные пояса Земли.

Строение атмосферы Земли

Атмосфера – это газовая оболочка Земли с содержащимися в ней аэрозольными частицами, движущимися вместе с Землей в мировом пространстве как единое целое и одновременно принимающая участие во вращении Земли. На дне атмосферы в основном протекает наша жизнь.

Своими атмосферами обладают почти все планеты нашей солнечной системы, но только земная атмосфера способна поддерживать жизнь.

Когда 4,5 миллиарда лет назад формировалась наша планета, то, по всей видимости, она была лишена атмосферы. Атмосфера была сформирована в результате вулканических выбросов водяного пара с примесями диоксида углерода, азота и других химических веществ из недр молодой планеты. Но атмосфера может содержать в себе ограниченное количество влаги, поэтому ее избыток в результате конденсации дал начало океанам. Но тогда атмосфера была лишена кислорода. Первые живые организмы, зародившиеся и развившиеся в океане, в результате реакции фотосинтеза (H 2 O + CO 2 = CH 2 O + O 2) стали выделять небольшие порции кислорода, который стал попадать в атмосферу.

Формирование кислорода в атмосфере Земли привело к образованию озонового слоя на высотах примерно 8 – 30 км. И, тем самым, наша планета приобрела защиту от губительного воздействия ультрафиолетового изучения. Это обстоятельство послужило толчком для дальнейшей эволюции жизненных форм на Земле, т.к. в результате усиления фотосинтеза количество кислорода в атмосфере стало стремительно расти, что способствовало формированию и поддержанию жизненных форм в том числе и на суше.

Сегодня наша атмосфера на 78,1% состоит из азота, на 21% из кислорода, на 0,9% из аргона, на 0,04% из диоксида углерода. Совсем малые доли по сравнению с основными газами составляют неон, гелий, метан, криптон.

На частицы газа, содержащиеся в атмосфере, действует сила притяжения Земли. А, учитывая то, что воздух сжимаем, то его плотность с высотой постепенно убывает, переходя в космическое пространство без четкой границы. Половина всей массы земной атмосферы сосредоточена в нижних 5 км, три четверти – в нижних 10 км, девять десятых – в нижних 20 км. 99% массы атмосферы Земли сосредоточено ниже высоты 30 км, а это всего 0,5% экваториального радиуса нашей планеты.

На уровне моря число атомов и молекул на кубический сантиметр воздуха составляет около 2 * 10 19 , на высоте 600 км всего 2 * 10 7 . На уровне моря атом или молекула пролетает примерно 7 * 10 -6 см, прежде чем столкнуться с другой частицей. На высоте 600 км это расстояние составляет около 10 км. И на уровне моря каждую секунду происходит около 7 * 10 9 таких столкновений, на высоте 600 км – всего около одного в минуту!

Но не только давление меняется с высотой. Меняется и температура. Так, например, у подножия высокой горы может быть достаточно жарко, в то время как вершина горы покрыта снегом и температура там в то же время ниже нуля. А стоит подняться на самолете на высоту примерно 10–11 км, как можно услышать сообщение о том, что за бортом –50 градусов, в то время как у поверхности земли градусов на 60–70 теплее…

Изначально ученые предполагали, что температура с высотой убывает до тех пор, пока не достигает абсолютного нуля (-273,16°C). Но это не так.

Атмосфера Земли состоит из четырех слоев: тропосфера, стратосфера, мезосфера, ионосфера (термосфера). Такое деление на слои принято исходя и из данных об изменении температуры с высотой. Самый нижний слой, где температура воздуха падает с высотой, назвали тропосферой. Слой над тропосферой, где падение температуры прекращается, сменяется изотермией и, наконец, температура начинает повышаться, назвали стратосферой. Слой над стратосферой, в котором температура снова стремительно падает – это мезосфера. И, наконец, тот слой, где снова начинается рост температуры, назвали ионосферой или термосферой.

Тропосфера простирается в среднем в нижних 12 км. Именно в ней происходит формирование нашей погоды. Самые высокие облака (перистые) образуются в самых верхних слоях тропосферы. Температура в тропосфере с высотой понижается адиабатически, т.е. изменение температуры происходит вследствие убывания давления с высотой. Температурный профиль тропосферы во многом обусловлен поступающей к поверхности Земли солнечной радиацией. В результате нагрева поверхности Земли Солнцем формируются конвективные и турбулентные потоки, направленные верх, которые формируют погоду. Стоит заметить, что влияние подстилающей поверхности на нижние слои тропосферы распространяется до высоты примерно 1,5 км. Конечно, исключая горные районы.

Верхней границей тропосферы является тропопауза – изотермический слой. Вспомните характерный вид грозовых облаков, вершина которых представляет собой «выброс» перистых облаков, называемых «наковальней». Эта «наковальня» как раз и «растекается» под тропопаузой, т.к. из-за изотермии восходящие потоки воздуха значительно ослабевают, и облако перестает развиваться по вертикали. Но в особых, редких случаях, вершины кучево-дождевых облаков могут вторгаться в нижние слои стратосферы, преодолевая тропопаузу.

Высота тропопаузы зависит от географической широты. Так, на экваторе она находится на высоте примерно 16 км, и ее температура составляет около –80°C. На полюсах тропопауза расположена ниже – примерно на высоте 8 км. Летом ее температура здесь составляет –40°C, и –60°C зимой. Т.о., несмотря на более высокие температуры у поверхности Земли, тропическая тропопауза намного холоднее, чем у полюсов.