Вал: конструктивные особенности, классификация и производство. Разница между валом и осью

Валы и оси. Общие сведения

Вал - деталь машин, предназначенная для передачи крутящего момента вдоль своей осевой линии. В большинстве случаев валы поддерживают вращающиеся вместе с ними детали (зубчатые колеса, шкивы, звездочки и др.). Некоторые валы (например, гибкие, карданные, торсионные) не поддерживают вращающиеся детали. Валы машин, которые кроме деталей передач несут рабочие органы машины, называются коренными. Коренной вал станков с вращательным движением инструмента или изделия называется шпинделем. Вал, распределяющий механическую энергию по отдельным рабочим машинам, называется трансмиссионным. В отдельных случаях валы изготовляют как одно целое с цилиндрической или конической шестерней (вал-шестерня) или с червяком (вал - червяк).

По форме геометрической оси валы бывают прямые, коленчатые и гибкие (с изменяемой формой оси). Простейшие прямые валы имеют форму тел вращения. На рисунке показаны гладкий (а) и ступенчатый (б) прямые валы. Ступенчатые валы, являются наиболее распространенными. Для уменьшения массы или для размещения внутри других деталей валы иногда делают с каналом по оси; в отличие от сплошных такие валы называют полыми.

Ось - деталь машин и механизмов, служащая для поддержания вращающихся частей, но не передающая полезный крутящий момент. Оси бывают вращающиеся (а ) и неподвижные (б ). Вращающаяся ось устанавливается в подшипниках. Примером вращающихся осей могут служить оси железнодорожного подвижного состава, примером невращающихся – оси передних колес автомобиля.

Из определений видно, что при работе валы всегда вращаются и испытывают деформации кручения или изгиба и кручения, а оси - только деформацию изгиба (возникающими в отдельных случаях деформациями растяжения и сжатия чаще всего пренебрегают).

Конструктивные элементы валов и осей

Опорная часть вала или оси называется цапфой. Концевая цапфа называется шипом, а промежуточная - шейкой. Концевая цапфа, предназначенная нести преимущественную осевую нагрузку, называется пятой. Шипы и шейки вала опираются на подшипники, опорной частью для пяты является подпятник. По форме цапфы могут быть цилиндрическими, коническими, шаровыми и плоскими (пяты).

Кольцевое утолщение вала, составляющее с ним одно целое, называется буртиком. Переходная поверхность от одного сечения к другому, служащая для упора насаживаемых на вал деталей, называется заплечиком.

Для уменьшения концентрации напряжений и повышения прочности переходы в местах изменения диаметра вала или оси делают плавными. Криволинейную поверхность плавного перехода от меньшего сечения к большему называют галтелью. Галтели бывают постоянной и переменной кривизны. Галтель вала, углубленную за плоскую часть заплечика, называют поднутрением.

Форма вала по длине определяется распределением нагрузок, т. е. эпюрами изгибающих и крутящих моментов, условиями сборки, и технологией изготовления. Переходные участки валов между соседними ступенями разных диаметров нередко выполняют с полукруглой канавкой для выхода шлифовального круга.

Посадочные концы валов, предназначенные для установки деталей, передающих вращающий момент в машинах, механизмах и приборах, стандартизованы. ГОСТ 12080-66* устанавливает номинальные размеры цилиндрических концов валов двух исполнений (длинные и короткие) диаметров от 0,8 до 630 мм, а также рекомендуемые размеры концов валов с резь­бой. ГОСТ 12081-72* устанавливает основные размеры конических концов валов с конусностью 1:10 также двух исполнений (длинные и короткие) и двух типов (с наружной и внутренней резьбой) диаметров от 3 до 630 мм.

Материалы валов и осей. Требованиям работоспособности валов и осей наиболее полно удовлетворяют углеродистые и легированные стали, а в ряде случаев - высокопрочные чугуны. Выбор материала, термической и химико-термической обработки определяется конструкцией вала и опор, техническими условиями на изделие и условиями его эксплуатации.

Для большинства валов применяют термически обработанные стали 45 и 40Х, а для ответственных конструкций - сталь 40ХН, ЗОХГТ и др. Валы из этих сталей подвергают улучшению или поверхностной закалке ТВЧ.

Быстроходные валы, вращающиеся в подшипниках скольжения, требуют высокой твердости цапф, поэтому их изготовляют из цементируемых сталей 20Х, 12Х2Н4А, 18ХГТ или азотируемых сталей типа 38Х2МЮА и др. Наибольшую износостойкость имеют хромированные валы.

Обычно валы подвергают токарной обработке с последующим шлифованием посадочных поверхностей и цапф. Иногда посадочные поверхности и галтели полируют или упрочняют поверхностным наклепом (обработка шариками или роликами).

Расчет валов и осей

При работе валы и вращающиеся оси даже при постоянной внешней нагрузке испытывают знакопеременные напряжения изгиба симметричного цикла, следовательно, возможно усталостное разрушение валов и вращающихся осей. Чрезмерная деформация валов может нарушить нормальную работу зубчатых колес и подшипников, следовательно, основными критериями работоспособности валов и осей являются сопротивление усталости материала и жесткость. Практика показывает, что разрушение валов быстроходных машин обычно происходит в результате усталости материала.

Для окончательного расчета вала необходимо знать его конструкцию, тип и расположение опор, места приложения внешних нагрузок. Вместе с тем подбор подшипников можно осуществить только когда известен диаметр вала. Поэтому расчет валов выполняется в два этапа: предварительный (проектный) и окончательный (проверочный) (второй этап рассматривать не будем).

Предварительный расчет валов. Проектный расчет производится только на кручение, причем для компенсации напряжений изгиба и других неучтенных факторов принимают значительно пониженные значения допускаемых напряжений кручения, например для выходных участков валов редукторов =(0,025...0,03), где - временное сопротивление материала вала. Тогда диаметр вала определится из условия прочности

,

Полученное значение диаметра округляется до ближайшего стандартного размера согласно ГОСТ 6636-69* «Нормальные линейные размеры», устанавливающего четыре ряда основных и ряд дополнительных размеров; последние допускается применять лишь в обоснованных случаях.

При проектировании редукторов диаметр выходного конца ведущего вала можно принять равным диаметру вала электродвигателя, с которым вал редуктора будет соединен муфтой.

После установления диаметра выходного конца вала назначается диаметр цапф вала (несколько больше диаметра выходного конца) и производится подбор подшипников. Диаметр посадочных поверхностей валов под ступицы насаживаемых деталей для удобства сборки принимают больше диаметров соседних участков. В результате этого ступенчатый вал по форме оказывается близок к брусу равного сопротивления.

Зубчатые колеса, шкивы, звездочки и другие вращающиеся детали машин устанавливают на валах или осях.

Вал предназначен для передачи вращающего момента вдоль своей оси, для поддержания расположенных на нем деталей и восприятия действующих на них сил. При работе вал испытывает изгиб и кручение, а в некоторых случаях - дополнительно растяжение или сжатие.

Ось только поддерживает установленные на ней детали и воспринимает действующие на них силы. В отличие от вала ось не передает вращающего момента и, следователь­но, не испытывает кручения. Оси могут быть неподвижны­ ми или могут вращаться вместе с насаженными на них дета­лями.

По форме геометрической оси валы делят на прямые (рис.2) и непрямые - коленчатые и эксцентриковые. Непрямые валы относят к специальным деталям.

Оси, как правило, изго­ товляют прямыми (см. рис. 1). По конструк­ции прямые валы и оси мало отличаются друг от друга.

Рис. 1. Ось тележки

Прямые валы и оси мо­гут быть гладкими или сту­ пенчатыми (см. рис. 2).

Рис. 2. Прямой ступенчатый вал:

1 - шип; 2 - шейка; 3 - подшипник; 4 - кольцо с поперечным пазом для размещения тяг съемника подшипника

Ступенчатая форма способствует равной напряженности от­дельных участков, упрощает изготовление и установку деталей на валу.

По форме поперечного сечения валы и оси бывают сплошные и полые (с осевым отверстием). Полые валы при­меняют для уменьшения массы или для размещения внутри другой детали.

По внешнему очертанию поперечного сечения валы раз­деляют на шлицевые и шпоночные, имеющие на некоторой длине шлицевой профиль или профиль со шпоночным пазом.

2. Конструктивные элементы. Материалы валов и осей

Цапфы - опорные участки вала или оси. Их подразделяют на шипы, шейки и пяты.

Шипом называют цапфу, расположенную на конце вала или оси и передающую преимущественно радиальную силу (см. рис. 2). Шейкой называют цапфу в средней части вала или оси. Опорами для шипов и шеек валов служат под­ шипники. Шипы и шейки по форме могут быть цилиндри­ ческими, коническими или сферическими. В большинстве слу­чаев применяют цилиндрические цапфы.

Рис.3. Пяты

Пятой называют цапфу, передающую осевую силу (рис. 3). Опорами для пят служат подпятники. Пяты по форме бывают сплошны­ ми (рис. 3, а), кольце­ выми (рис. 3, б) и гре­ бенчатыми (рис. 3, в). Гребенчатые пяты в на­стоящее время применяют редко.

Посадочные поверхности валов и осей под ступицы наса­живаемых деталей выполняют цилиндрическими и коничес­ кими (см. рис. 2). При посадках с натягом диаметр этих поверхностей принимают больше диаметра соседних участ­ков для удобства напрессовки и снижения концентрации напряжений (см. рис. 2). Диаметры посадочных поверхно­стей и диаметры под подшипники скольжения выбирают из ряда нормальных линейных размеров, диаметры под под­шипники качения - по стандартам на подшипники.

Конические концы валов (см. рис. 2) изготовляют с конусностью 1:10. Их применяют для облегчения монтажа устанавливаемых на вал деталей.

Переходные участки валов и осей между двумя ступеня­ми разных диаметров выполняют:

а) с канавкой со скруглением для выхода шлифовального круга (рис. 4, а);

б) с галтелью постоянного радиуса, рис. 4, б (гал­тель - поверхность плавного перехода от участка меньше­го сечения к большему);

в) с галтелью переменного радиуса (рис.4, в).

Рис. 4. Переходные участки вала

Переходные участки являются концентраторами напря­ жений. Эффективным средством для снижения концентра­ции напряжений в переходных участках является повышение

податливости путем выполнения раз­грузочных канавок (рис.5, а), увеличе­ния радиусов галтелей, выполнения отвер­стий в ступенях большего диаметра (рис.5, б). Деформационное упрочнение (на­ клеп) галтелей повышает несущую спо­ собность валов и осей.

Рис. 5.Способы повышения уставной прочности валов

Материалы валов и осей должны хоро­ шо обрабатываться, быть прочными и иметь высокий модуль упругости. Этим требованиям наиболее полно удовлетво­ряют углеродистые и легированные ста­ли, из которых преимущественно изготав­ливают валы и оси. Для валов и осей без упрочняющей термообработки применяют стали Ст5, Ст6; для валов с термообработкой - стали 45, 40Х. Быстроходные валы, работающие в подшипниках скольжения, изготовляют из сталей 20, 20Х, 12ХНЗА. Цапфы этих валов цементуют для повышения износостойкости.

Валы и оси обрабатывают на токарных станках с после­дующим шлифованием цапф и посадочных поверхностей.

Валы и оси служат для поддержания вращающихся деталей (зубчатых колес, муфт, шкивов, звездочек, роторов и т. п.) и передачи нагрузок от этих деталей через опоры на корпус. Оси бывают как вращающимися, так и неподвижными, они воспринимают действия изгибающих моментов и продольных сил. Валы, в отличие от осей, могут быть только вращающимися. Они подвергаются действию продольных сил, изгибающих и крутящих моментов.

Конструктивная форма валов и осей зависит от многих факторов - назначения механизма, назначения и формы деталей, сопрягающихся с валом или осью, характера нагрузок, технологии изготовления и сборки.

Валы бывают прямые , коленчатые и гибкие. В настоящем учебнике рассматриваются только наиболее распространенные прямые валы. Оси бывают только с прямой геометрической осью.

Валы и оси могут быть сплошными и полыми. При использовании полых валов и осей можно существенно уменьшить массу конструкции. Например, полый вал с отношением диаметра отверстия к наружному диаметру вала 0,75 при практически равной прочности со сплошным валом имеет массу на 50% меньше. В связи с этим в механизмах ЛА валы и оси большого диаметра (больше 10...12 мм) выполняются, как правило, полыми. Входные и выходные валы проектируются с несквозными отверстиями для герметизации внутренней полости механизма или с отверстиями, закрываемыми заглушками.

Валы и оси различаются по форме: гладкие и ступенчатые . Выбирая более сложную в изготовлении ступенчатую форму, можно обеспечить равномерное распределение напряжений по длине вала и необходимые прочность и жесткость при действии внутренних силовых факторов. Кроме того, при ступенчатой форме создаются лучшие условия для сборки деталей с валом и для их фиксирования относительно вала в осевом и радиальном направлениях. Оси, ввиду их большей простоты, часто выполняют гладкими, а валы, как правило, ступенчатыми, причем каждой детали соответствует своя ступень на валу, обработанная с требуемой точностью и шероховатостью.

Валы выполняются в виде отдельной детали (рис. 13.1, а) или за одно целое с цилиндрическими зубчатыми колесами (рис. 13.1, б, г) у коническим зубчатым колесом (рис. 13.1, в).

В механизмах ЛА валы часто изготавливаются за одно целое с деталями передач, что ввиду отсутствия соединяющих элементов уменьшает общую массу конструкции и увеличивает ее надежность. Однако монолитная конструкция вала не всегда целесообразна, поскольку не всегда требуется выполнять вал и деталь из одного материала. Кроме того, при таком варианте исключается возможность замены вала или детали при эксплуатации. При изготовлении монолитной конструкции из заготовки большого диаметра следует учитывать тот факт, что прочностные свойства материала снижаются с увеличением диаметра заготовки. Монолитная конструкция экономически выгодна в том случае, если диаметр детали ненамного превышает диаметр собственного вала, а также в условиях единичного производства или получении заготовки ковкой (например, формировании элементов детали, расположенных на конце вала, операцией высадки).

Валы могут быть выполнены с зубьями (рис. 13.1,6), со шпоночными пазами (рис. 13.1, а), с кольцевыми канавками под опорные кольца (рис. 13.1, а), с резьбовыми участками (рис. 13.1, 6, в) и пазами для стопорения резьбовых деталей (рис. 13.1, в). Валы могут иметь осевые (рис. 13.1, б) и радиальные (рис. 13.1, в) отверстия, а также канавки для выхода

шлифовального круга (рис. 13.1, а, в), участки выхода фрезы при нарезании зубьев (рис. 13.1, б ), а также проточки для выхода инструмента при нарезании резьбы (рис. 13.1, в).

Оси бывают неподвижные (рис. 13.2, а) и вращающиеся (рис. 13.2, б) у гладкие (рис. 13.2, а) и ступенчатые (рис. 13.2, б). Оси, как и валы, могут иметь зубья (шлицы), пазы, проточки, канавки, резьбу и отверстия. Гладкие оси стандартизированы. Фиксирование этих осей в осевом направлении чаще всего


осуществляется шплинтом (рис. 13.3, а). Для осей (главным образом неподвижных) применяется фиксирование цилиндрическим или коническим штифтом (рис. 13.3, б ), установочным винтом (рис. 13.3, в) или оседержателем с болтом (рис. 13.3, г). Неподвижные оси устанавливаются по переходной посадке (например, К7/И6) или по посадке с натягом (например, R7/h6).

Подвижные оси и валы как в радиальном, так и в осевом направлениях фиксируются в подшипниках, которые в свою очередь устанавливаются в корпусе. Точное фиксирование валов и осей в радиальном направлении осуществляется с помощью посадок их в подшипники и посадок подшипников в корпус. В осевом направлении валы и оси с насаженными на них деталями соединяются с подшипниками одним из способов, показанных на рис. 13.4. Наибольшее применение находит простое и дешевое фиксирование пружинными кольцами (рис. 13.4, а): эксцентрическими 1 или концентрическими 2 . Наличие зазора 5 между кольцом и подшипником приводит к неточности установки деталей и к скольжению поверхностей деталей и вала, т. е. к их изнашиванию. Использование промежуточного кольца 3 (рис. 13.4, б) с подгонкой его по толщине прошлифовкой торца или комплекта регулировочных прокладок 4 из фольги (рис. 13.4, в) позволяет свести величину зазора 5 к минимуму. Регулировочные прокладки рядом с пружинным кольцом не ставят во избежание попадания прокладок в канавку для кольца. При фиксировании на конце вала удобным является применение стандартной торцовой шайбы 5 (рис. 13.4, г)> закрепляемой винтом 6 и фиксируемой от проворачивания штифтом 7. Винт стопорится от отвинчивания шайбой 8. При значительной осевой нагрузке применяется шайба, закрепляемая двумя винтами (рис. 13.4, д).

Чем отличается ось от вала? Какие различают виды осей и валов? Из каких материалов их изготавливают?

Валом называют деталь (как правило, гладкой или ступенчатой цилиндрической формы), предназначенную для поддержания установленных на ней шкивов, зубчатых колес, звездочек, катков и т.д., и для передачи вращающего момента.

лебедка шпонка клиновая врезная

При работе вал испытывает изгиб и кручение, а в отдельных случаях помимо изгиба и кручения валы могут испытывать деформацию растяжения (сжатия).

Некоторые валы не поддерживают вращающиеся детали и работают только на кручение.

Вал 1 имеет опоры 2, называемые подшипниками. Часть вала, охватываемую опорой, называют цапфой. Концевые цапфы именуют шипами 3, а промежуточные - шейками 4.

Прямой вал: 1 - вал; 2 - опоры вала; 3 - цапфы; 4 - шейка

Осью называют деталь, предназначенную только для поддержания установленных на ней деталей.

В отличие от вала ось не передает вращающего момента и работает только на изгиб. В машинах оси могут быть неподвижными или же могут вращаться вместе с сидящими на них деталями (подвижные оси).

Не следует путать понятия "ось колеса", это деталь и "ось вращения", это геометрическая линия центров вращения.


Конструкции осей: а - вращающаяся ось; б - неподвижная ось

Формы валов и осей весьма многообразны от простейших цилиндров до сложных коленчатых конструкций. Известны конструкции гибких валов, которые предложил шведский инженер Карл де Лаваль ещё в 1889 г.

Форма вала определяется распределением изгибающих и крутящих моментов по его длине. Правильно спроектированный вал представляет собой балку равного сопротивления. Валы и оси вращаются, а следовательно, испытывают знакопеременные нагрузки, напряжения и деформации (рис.). Поэтому поломки валов и осей имеют усталостный характер.


Колебания изгибных напряжений оси колёсной пары в движении: а - на малой скорости; б - на эксплуатационной скорости

Классификация валов и осей

По назначению валы делят на валы передач (на них устанавливают детали передач) и коренные валы (на них устанавливают дополнительно еще и рабочие органы машины).

Типы валов: а - кривошипный вал: б - коленчатый вал; в - гибкий вал; г - телескопический вал; д - карданный вал

Форма валов и осей разнообразна и зависит от выполняемых ими функций. Иногда, валы изготавливаются совместно с другими деталями, например, шестернями, кривошипами, эксцентриками.

По геометрической форме валы делят на: прямые; кривошипные; коленчатые; гибкие; телескопические; карданные. Кривошипные и коленчатые валы используют для преобразования возвратно-поступательного движения во вращательное (поршневые двигатели) или наоборот (компрессоры); гибкие - для передачи вращающего момента между узлами машин, меняющими свое положение в работе (строительные механизмы, зубоврачебные машины и т.п.); телескопические - при необходимости осевого перемещения одного вала относительно другого.

Гибкие валы изготавливаются многослойной навивкой стальной пружинной проволоки на тонкий центральный стержень. Они сохраняют достаточную гибкость лишь при небольших диаметрах, так как при увеличения диаметра момент инерции сечения, а, следовательно, и жесткость резко возрастают, Поэтому при всех положительных качествах и удобстве привода, такие валы не могут передавать сколько-нибудь значительной мощности и имеют сравнительно узкое применение.

Оси обычно изготовляют прямыми. Наиболее широко распространены в машиностроении прямые валы и оси. Коленчатые и криволинейные валы относятся к специальным деталям и в настоящем курсе не изучаются.

По конструктивным признакам: гладкие валы и оси; ступенчатые валы и оси; валы-шестерни; валы-червяки.

Для осевого фиксирования деталей на валу или оси используются уступы, буртики, конические участки, стопорные кольца, распорные втулки, которые могут монтироваться в одном комплекте с другими деталями.

Наиболее удобны для сборки узлов ступенчатые валы: уступы предохраняют детали от осевого смещения и фиксируют их положения при сборке, обеспечивают свободное продвижение детали по валу до места ее посадки. Желательно, чтобы высота уступов допускала разборку узла без вынимания шпонок из вала. Диаметры посадочных участков должны быть выполнены по ГОСТ 6636-69, поскольку на эти диаметры существуют калибры массового производства. Для обеспечения необходимого вращения деталей вместе с осью или валом применяют шпонки, шлицы, штифты, профильные участки валов и посадки с натягом. По типу сечения валы и оси бывают; сплошные; полые комбинированные. Применение полых валов приводит к существенному снижению массы и повышению жесткости вала при той же прочности, но изготовление полых валов сложнее сплошных. Полыми валы изготовляют и в тех случаях, когда через вал пропускают другую деталь, подводят масло. Участки 1 осей и валов, которыми они опираются на подшипники при восприятии осевых нагрузок, называют пятами. Опорами для пят служат подпятники 2. Посадочные поверхности валов и осей под ступицы насаживаемых деталей называют цапфами и выполняют цилиндрическими, коническими или шаровыми. При этом принято называть промежуточные цапфы шейками, концевые - шипами. Широкое распространение в машиностроении получили цилиндрические цапфы; конические и шаровые цапфы применяют редко.

Опора вертикального вала: 1 - пята; 2 - подпятник

Цапфы: цилиндрические - а; конические - б; шаровые - в

Переходные участки между двумя диаметрами выполняют:

  • 1) с галтелью постоянного радиуса;
  • 2) с галтелью переменного радиуса. Такая галтель снижает концентрацию напряжений и увеличивает долговечность. Применяется она на сильно нагруженных участках валов и осей.

Конструктивные разновидности переходных участков между ступенями валов и осей: канавка со скруглением для выхода шлифовального круга; галтель постоянного радиуса; галтель переменного радиуса.

Конструктивные разновидности переходных участков вала: а - канавка; б - галтель; в - галтель переменного радиуса; г - фаска

Торцы валов и осей делают с фасками, т.е. слегка обтачивают их на конце. Посадочные поверхности валов и осей обрабатывают на токарных и шлифовальных станках.

Заплечики валов и осей препятствуют сдвигом лишь в одном направлении. В случае возможного осевого смещения в противоположную сторону для его исключения применяют гайки, штифты, стопорные винты и т.д. Концы валов для установки муфт, шкивов и других деталей, передающих вращающие моменты, выполняют цилиндрическими или коническими, а их размеры стандартизованы. Для установки шпонок вал снабжают пазом.

Материалы валов и осей

Основными критериями работоспособности валов и осей являются жесткость, объемная прочность и износостойкость при относительных микроперемещениях, которые вызывают коррозию.

В качестве материала для осей и валов чаще всего применяют углеродистые и легированные стали (прокат, поковка и реже стальные отливки), так как они обладают высокой прочностью, способностью к поверхностному и объемному упрочнению, легко получаются прокаткой цилиндрические заготовки и хорошо обрабатываются на станках, а также высокопрочный модифицированный чугун и сплавы цветных металлов (в приборостроении). Для неответственных малонагруженных конструкций валов и осей применяют углеродистые стали без термической обработки. Ответственные тяжело нагруженные валы изготовляют из легированной стали 40ХНМА, 25ХГТ и др. Без термической обработки применяют стали 35 и 40, Ст5, Стб, 40Х, 40ХН, ЗОХНЗА, с термической обработкой - стали 45, 50 и др.

Шейки валов, работающие на трение в подшипниках скольжения, должны иметь более твердую поверхность (НRС=50-60), что может быть достигнуто применением закалки TBЧ или цементации и закалки.

При небольших диаметрах зубчатых колес вал и шестерню выполняют как одно целое. В этом случае материал для изготовления вала-шестерни выбирают в соответствии с требованиями, предъявляемыми к материалу шестерни.

Механическую обработку валов обычно производят в центрах, для чего заготовки валов снабжают центровыми отверстиями. Канавки, галтели, шпоночные пазы на одном валу желательно иметь одинаковых размеров, чтобы обработать их одним и тем же инструментом.

В автомобильной и тракторной промышленности коленчатые валы двигателей изготавливают из ковкого или высокопрочного чугуна.

Валы и оси. Общие сведения

Вал — деталь машин, предназначенная для передачи крутящего момента вдоль своей осевой линии. В большинстве случаев валы поддерживают вращающиеся вместе с ними детали (зубчатые колеса, шкивы, звездочки и др.). Некоторые валы (например, гибкие, карданные, торсионные) не поддерживают вращающиеся детали. Валы машин, которые кроме деталей передач несут рабочие органы машины, называются коренными. Коренной вал станков с вращательным движением инструмента или изделия называется шпинделем. Вал, распределяющий механическую энергию по отдельным рабочим машинам, называется трансмиссионным. В отдельных случаях валы изготовляют как одно целое с цилиндрической или конической шестерней (вал—шестерня) или с червяком (вал — червяк).

По форме геометрической оси валы бывают прямые, коленчатые и гибкие (с изменяемой формой оси). Простейшие прямые валы имеют форму тел вращения. На рисунке показаны гладкий (а) и ступенчатый (б) прямые валы. Ступенчатые валы, являются наиболее распространенными. Для уменьшения массы или для размещения внутри других деталей валы иногда делают с каналом по оси; в отличие от сплошных такие валы называют полыми.

Ось — деталь машин и механизмов, служащая для поддержания вращающихся частей, но не передающая полезный крутящий момент. Оси бывают вращающиеся (а ) и неподвижные (б ) . Вращающаяся ось устанавливается в подшипниках. Примером вращающихся осей могут служить оси железнодорожного подвижного состава, примером невращающихся – оси передних колес автомобиля.

Из определений видно, что при работе валы всегда вращаются и испытывают деформации кручения или изгиба и кручения, а оси — только деформацию изгиба (возникающими в отдельных случаях деформациями растяжения и сжатия чаще всего пренебрегают).

Конструктивные элементы валов и осей

Опорная часть вала или оси называется цапфой. Концевая цапфа называется шипом, а промежуточная — шейкой. Концевая цапфа, предназначенная нести преимущественную осевую нагрузку, называется пятой. Шипы и шейки вала опираются на подшипники, опорной частью для пяты является подпятник. По форме цапфы могут быть цилиндрическими, коническими, шаровыми и плоскими (пяты).

Кольцевое утолщение вала, составляющее с ним одно целое, называется буртиком. Переходная поверхность от одного сечения к другому, служащая для упора насаживаемых на вал деталей, называется заплечиком.

Для уменьшения концентрации напряжений и повышения прочности переходы в местах изменения диаметра вала или оси делают плавными. Криволинейную поверхность плавного перехода от меньшего сечения к большему называют галтелью. Галтели бывают постоянной и переменной кривизны. Галтель вала, углубленную за плоскую часть заплечика, называют поднутрением.

Форма вала по длине определяется распределением нагрузок, т. е. эпюрами изгибающих и крутящих моментов, условиями сборки, и технологией изготовления. Переходные участки валов между соседними ступенями разных диаметров нередко выполняют с полукруглой канавкой для выхода шлифовального круга.

Посадочные концы валов, предназначенные для установки деталей, передающих вращающий момент в машинах, механизмах и приборах, стандартизованы. ГОСТ 12080—66* устанавливает номинальные размеры цилиндрических концов валов двух исполнений (длинные и короткие) диаметров от 0,8 до 630 мм, а также рекомендуемые размеры концов валов с резьбой. ГОСТ 12081—72* устанавливает основные размеры конических концов валов с конусностью 1:10 также двух исполнений (длинные и короткие) и двух типов (с наружной и внутренней резьбой) диаметров от 3 до 630 мм.

Материалы валов и осей. Требованиям работоспособности валов и осей наиболее полно удовлетворяют углеродистые и легированные стали, а в ряде случаев — высокопрочные чугуны. Выбор материала, термической и химико-термической обработки определяется конструкцией вала и опор, техническими условиями на изделие и условиями его эксплуатации.

Для большинства валов применяют термически обработанные стали 45 и 40Х, а для ответственных конструкций — сталь 40ХН, ЗОХГТ и др. Валы из этих сталей подвергают улучшению или поверхностной закалке ТВЧ.

Быстроходные валы, вращающиеся в подшипниках скольжения, требуют высокой твердости цапф, поэтому их изготовляют из цементируемых сталей 20Х, 12Х2Н4А, 18ХГТ или азотируемых сталей типа 38Х2МЮА и др. Наибольшую износостойкость имеют хромированные валы.

Обычно валы подвергают токарной обработке с последующим шлифованием посадочных поверхностей и цапф. Иногда посадочные поверхности и галтели полируют или упрочняют поверхностным наклепом (обработка шариками или роликами).

Расчет валов и осей

При работе валы и вращающиеся оси даже при постоянной внешней нагрузке испытывают знакопеременные напряжения изгиба симметричного цикла, следовательно, возможно усталостное разрушение валов и вращающихся осей. Чрезмерная деформация валов может нарушить нормальную работу зубчатых колес и подшипников, следовательно, основными критериями работоспособности валов и осей являются сопротивление усталости материала и жесткость. Практика показывает, что разрушение валов быстроходных машин обычно происходит в результате усталости материала.

Для окончательного расчета вала необходимо знать его конструкцию, тип и расположение опор, места приложения внешних нагрузок. Вместе с тем подбор подшипников можно осуществить только когда известен диаметр вала. Поэтому расчет валов выполняется в два этапа: предварительный (проектный) и окончательный (проверочный) (второй этап рассматривать не будем).

Предварительный расчет валов. Проектный расчет производится только на кручение, причем для компенсации напряжений изгиба и других неучтенных факторов принимают значительно пониженные значения допускаемых напряжений кручения, например для выходных участков валов редукторов =(0,025...0,03), где — временное сопротивление материала вала. Тогда диаметр вала определится из условия прочности

откуда

Полученное значение диаметра округляется до ближайшего стандартного размера согласно ГОСТ 6636—69* «Нормальные линейные размеры», устанавливающего четыре ряда основных и ряд дополнительных размеров; последние допускается применять лишь в обоснованных случаях.

При проектировании редукторов диаметр выходного конца ведущего вала можно принять равным диаметру вала электродвигателя, с которым вал редуктора будет соединен муфтой.

После установления диаметра выходного конца вала назначается диаметр цапф вала (несколько больше диаметра выходного конца) и производится подбор подшипников. Диаметр посадочных поверхностей валов под ступицы насаживаемых деталей для удобства сборки принимают больше диаметров соседних участков. В результате этого ступенчатый вал по форме оказывается близок к брусу равного сопротивления.