Сточные воды в котельных и их очистка. Способ очистки сточных вод про-мышленных котельных

Паламарчук, Александр Васильевич

Ученая cтепень:

Кандидат технических наук

Место защиты диссертации:

Новочеркасск

Код cпециальности ВАК:

Специальность:

Тепловые электрические станции, их энергетические системы и агрегаты

Количество cтраниц:

Введение

Глава 1 Анализ технологических схем и методов вЬдоприготовления на ТЭС и АЭС

1.1 Роль и место блока химводоочистки в тепловых схемах ТЭС и АЭС

1.2 Современные методы водоподготовки

1.2.1 Технологическая схема предварительной очистки воды

1.2.2 Технологии химического обессоливания на базе ионитных фильтров

1.2.3 Технология термического обессоливания воды

1.3 Основные направления совершенствования схем ВПУ

1.3.1 Схема традиционного химического обессоливания

1.3.2 Схема термического обессоливания

1.3.3 Схема химического обессоливания воды с упариванием стоков

1.3.4 Схема термохимического обессоливания со смешением всех или части стоков Na-катионитных фильтров с исходной водой

1.3.5 Схема термохимического обессоливания со сбросом части стоков Na-катионитных фильтров

1.3.6 Схема химического обессоливания по технологии UP.CO.R

1.3.7 Усовершенствованная схема химического обессоливания

1.4 Сравнительный анализ экологических показателей работы схем обессоливания воды на ТЭС и АЭС

1.5 Анализ существующих методов утилизации шламов химводоочи-сток на ТЭС и АЭС

1.6 Краткие выводы и постановка задачи исследований

Глава 2 Методика исследований

2.1 Исследование физико-химических свойств шламов ХВО ТЭС и

2.2 Исследование радиологических свойств шламов ТЭС и Волгодонской АЭС

2.3 Исследование наведенной активности в шламе Волгодонской

2.4 Химический анализ компонентов при изготовлении модельных растворов исходной воды

2.5 Методические аспекты исследования шламов ВПУ ВоАЭС , РоТЭЦ-2 и технологических масс на основе этих шламов

Глава 3 Результаты экспериментального исследования свойств шламов ХВО ТЭС и АЭС

3.1 Физико-химические и гранулометрические характеристики шламов ХВО ТЭС и АЭС

3.2 Исследование фазового состава и термодинамических свойств шламов ХВО

3.3 Результаты исследования радиологических и гигиенических характеристик шлама ХВО Волгодонской АЭС и шести ТЭЦ и ГРЭС Российской Федерации

3.4 Результаты исследования наведенной активности в шламе ХВО Волгодонской АЭС

3.5 Математическое определение состава шламов ХВО ТЭС и АЭС по данным о качестве исходной воды

3.6 Результаты исследования технологических свойств сырьевых масс на основе шламов ХВО ТЭС и АЭС

3.6.1 Результаты исследования пластичности смесей шламов с глиной

3.6.2 Результаты исследования механической прочности и связующей способности масс на основе шламов ХВО

3.6.3 Результаты оценки прочности бетонных смесей на основе шламов ХВО

3.6.4 Результаты исследования технологических характеристик керамических изделий на основе шлама Волгодонской АЭС

3.6.5 Результаты исследования механизма формирования структуры спекаемых масс с добавками шлама ХВО

3.7 Результаты исследования технологических характеристик получения извести из шлама ХВО Волгодонской АЭС

3.8 Краткие выводы

Глава 4 Разработка многоцелевой технологической схемы химического обессоливания исходной воды ТЭС и способов утилизации шлама

ХВО (на примере Волгодонской АЭС)

4.1 Исходные данные для проектирования схемы ХВО 93 4.1.1 Технологическая характеристика модернизируемой схемы ХВО

4.2 Вариант модернизации схемы ХВО с безотходной технологией переработки солесодержащих стоков

4.3 Разработка схемы ХВО с утилизацией шламовых отходов и солесодержащих стоков

4.4 Краткие выводы

Глава 5 Технико-экономические характеристики многоцелевой безотходной схемы химводоочистки Волгодонской АЭС

5.1 Результаты технико-экономического сравнения технологий обессоливания добавочной воды на ТЭС и АЭС

5.2 Технико-экономические показатели строительства и модернизации химводоочистки Волгодонской АЭС

5.3 Расчет затрат на тепловую энергию при производстве изделий из шлама ХВО ВоАЭС

5.4 Краткие выводы 116 Заключение 118 Список литературы

Введение диссертации (часть автореферата) На тему "Разработка рациональных способов безотходного использования шлама и солесодержащих стоков электростанций"

В связи с моральным и физическим старением большого парка энергооборудования и ростом масштабов развития энергетики, как в России, так и в других странах, возникает потребность использования новых технологий и в первую очередь в более совершенных технологических схемах водоподготовки для питания паровых котлов ТЭС и парогенераторов АЭС. При разработке и эксплуатации таких схем часто обостряются противоречия между экономичностью и эко-логичностью электростанции в целом.

Во многих передовых странах мира запрещено применение технологий не соответствующих критериям экологичности /1-3/. Однако существующие энергетические технологии реализуются в основном по одноцелевому принципу. При этом используется только горючая масса топлива, обессоленная или умягченная исходная вода, а так называемые «отходы » - зола, шлак и шламы отправляются в золоотвалы и шламонакопители.

В данной ситуации приоритетной задачей энергетики становится необходимость развития многоцелевых энергетических технологий, обеспечивающих максимально полное использование первичных ресурсов с одновременной переработкой и утилизацией так называемых отходов, являющихся ценным сырьём для сопутствующих производств /4-5/.

На паротурбинных электростанциях вода используется как рабочее тело и как теплоноситель, как участник технологических процессов в энергетических системах и агрегатах. Известно, что наиболее жёсткие требования предъявляются к качеству воды, которая работает в основном энергетическом цикле. Эффективность и надежность работы оборудования современных ТЭС и АЭС определяется чистотой контактирующих с водой и паром теплопередающих поверхностей металла. Интенсивность передачи тепла в современных паровых котлах ТЭС достигает 466-582 кВт/м2. В реакторах АЭС эта величина достигает 11,6 кВт/м2. Образование отложений-примесей воды на поверхностях парогенераторов (ПГ) и на лопаточном аппарате турбин не только резко снижает их экономичность, но при значительных количествах отложений вызывает повреждение отдельных деталей котлов и турбин. Опыт многолетней эксплуатации энергоблоков ТЭС и АЭС в России и за рубежом свидетельствует о том, что необходимым условием бесперебойной и экономичной их работы является рациональная организация водоподго-товки и водного режима ПГ, строгое соблюдение обоснованных эксплуатационных норм качества теплоносителя и рабочего тела ТЭС и АЭС.

К настоящему времени вопросы о минимизации и нейтрализации сточных вод водоподготовительных установок (ВПУ) ТЭС и АЭС проработаны достаточно полно /6-11/, однако ни одна из технологических схем, как в отечественной, так и зарубежной энергетике не реализует на практике принцип полной утилизации отходов ВПУ /12-13/.

Особые проблемы связаны со значительным количеством шламосодержа-щих вод, образующихся на стадии предварительной подготовки добавочной воды с применением извести. Традиционно шламы ВПУ сбрасываются в шламонако-пители, которые требуют все увеличивающихся площадей, усиливая экологическую нагрузку на прилегающие территории электростанций. Особенно остро эта проблема стоит для АЭС, расположенных, как правило, вблизи больших водоемов.

Зарубежный и отечественный опыт свидетельствует о том, что шламы ВПУ ТЭС и АЭС - не бросовые отходы, а ценное исходное сырьё для многих отраслей промышленности и сельского хозяйства /13-15/. В этой связи одной из основных задач энергетики является перевод шламов ВПУ из разряда «отходов » во вторичные сырьевые источники. Это позволит решать важнейшие экологические, экономические и социальные вопросы.

Таким образом, разработка эффективных технологических схем водоподго-товки с рациональными методами утилизации отходов ВПУ, позволит решить существенную для энергетической отрасли задачу - создания многоцелевой, безотходной, экологически чистой системы водопользования на ТЭС и АЭС.

Целью диссертационной работы является усовершенствование технологической схемы подготовки добавочной воды с разработкой рациональных способов утилизации шлама ВПУ на примере Волгодонской АЭС.

Конкретные задачи исследования, решаемые в работе:

Сравнительный анализ современных технологических схем водоподготовки на ТЭС и АЭС;

Анализ существующих методов утилизации загрязненных вод и шламовых отходов ВПУ ТЭС и АЭС;

Исследование физико-химических и радиологических характеристик шлама ВПУ Волгодонской АЭС (ВоАЭС ) с целью использования его в составе изделий, обеспечивающих защиту от ионизирующих излучений;

Исследование технологических характеристик шлама ВПУ ВоАЭС, как сырьевой добавки при производстве строительных материалов и гашеной извести;

Исследование наведенной активности (степени активации) шлама ВПУ ВоАЭС в зонах с различной интенсивностью ионизирующих излучений непосредственно на действующем оборудовании ВоАЭС;

Расчетно-теоретические исследования степени активации компонентов шлама при облучении их тепловыми нейтронами;

Разработка технологической схемы рационального водопользования на ВоАЭС с утилизацией шлама ХВО .

Научная новизна работы состоит в следующем:

Получены новые экспериментальные и расчетные данные о степени активации шлама ХВО ВоАЭС при облучении его гамма-квантами и тепловыми нейтронами;

Разработана математическая модель в виде системы уравнений регрессии, которая позволяет определить концентрации шести основных компонентов шлама ВоАЭС в зависимости от качества исходной воды;

Физико-химическими методами установлен механизм формирования структуры спекаемой массы на основе шлама ВПУ при производстве керамических изделий;

Установлено оптимальное соотношение между минерализаторами и содержанием шлама в спекаемой массе, которое определено как щелочноземельный модуль М;

Изучены свойства масс и изделий при значениях М от 1 до 7;

Разработана и экспериментально испытана технология скоростной термообработки шлама ВПУ ВоАЭС и получения из него активной извести с последующим использованием её в цикле водоподготовки;

Разработана комплексная технологическая схема водоподготовки с утилизацией шлама солевых растворов ХВО ВоАЭС.

Практическая значимость работы заключается в том, что, результаты промышленных, лабораторных и расчетных исследований используются в практике эксплуатации технологических схем водопользования на ТЭС и АЭС, проектных и научно-исследовательских институтов, в частности:

Принципы и технико-экономические условия реализации схемы водоподготовки с утилизацией солесодержащих стоков и шлама ХВО использованы ОАО «НИИ ЭПЭ » и РоТЭП при проектировании и создании многоцелевой опытно-промышленной установки (ОПУ ) газификации твердого топлива;

Составы масс, включающих шламы ВПУ ВоАЭС, внедрены на Шахтинском заводе «Стройфарфор »;

Основы технологии скоростной сушки шлама ВПУ ВоАЭС и получения из него активной извести использованы ЗАО «Белокалитвинский известковый завод »;

Принципы реализации многоцелевой технологии водоподготовки с утилизацией солесодержащих стоков и шлама ВПУ внедрены на Новочеркасской ГРЭС , Курской АЭС, Калининской АЭС, и Ростовской ТЭЦ -2.

Достоверность и обоснованность результатов работы обеспечены применением современных методов планирования экспериментов, обработки их результатов математическим моделированием с применением ПЭВМ , воспроизводимостью данных, полученных автором, результатами промышленных и лабораторных исследований, согласованием их с независимыми данными других авторов и использованием в работе фундаментальных законов физической химии и ядерной физики.

Планирование и непосредственное участие в натурных и лабораторных исследованиях;

Обработка и анализ результатов расчетных и экспериментальных исследований, разработка масс для производства рецептурных модулей и оптимальных составов строительных материалов на основе шлама ВПУ ВоАЭС;

Обобщение полученных результатов и выдвижение практических предложений;

Разработка технологической схемы рационального водопользования с утилизацией солесодержащих стоков и шламовых отходов ВПУ и тепла уходящих газов при производстве вторичной продукции из шлама непосредственно на ВоАЭС.

Апробация работы

Основные результаты исследований докладывались и обсуждались:

На всероссийской научно-практической конференции Росэнергоатом (Москва 2002 г.);

На семинарах кафедры «Атомные электростанции » МЭИ (г. Москва 2002 г.);

На семинарах кафедры «Теплоэнергетических технологий и оборудования » ВИ ЮРГТУ (НПИ). На техническом совете кафедры «Тепловые электрические станции » ЮРГТУ (Новочеркасск 2000-2002 г.);

На техническом совете ОАО «НИИ ЭПЭ» (г. Ростов-на-Дону, 2001-2002 г.);

На международной конференции «Диагностика оборудования электростанций » (г. Новочеркасск 2002 г.);

На IV международной конференции "Перспективные задачи инженерной науки" (г. Игало, Черногория, 2003 г.).

Публикации по работе

Заключение диссертации по теме "Тепловые электрические станции, их энергетические системы и агрегаты", Паламарчук, Александр Васильевич

1 Результаты исследования показали, что усовершенствованная схема ХВО ВоАЭС, включающая безотходную технологию переработки солесодержащих стоков и шлама ВПУ , вполне конкурентоспособна по относительной технологической составляющей со всеми остальными схемами ХВО.

2 Установлено, что получение дополнительной товарной продукции из шлама и концентрированных стоков ХВО снижает себестоимость 1 м3 обессоленной воды до 1,02 руб/м3 в ценах 1991г.

3 Разработанный вариант модернизации ХВО имеет так же хорошие показатели по эксплуатационным издержкам и приведенным затратам по сравнению с традиционной схемой химобессоливания без переработки солесодержащих стоков и утилизации шлама ХВО.

4 Показано, что бетонные смеси, термоизоляционные изделия, известь, керамика и другое экономически целесообразнее производить непосредственно на ТЭЦ и АЭС, в первую очередь для собственных нужд. При этом существенно снижаются затраты на транспортировку шлама, тепловую, электрическую энергию, технологические операции, расходы на хранение шлама и другое, по сравнению с вариантом создания автономного производства, вне ТЭС и АЭС, для этих целей.

ЗАКЛЮЧЕНИЕ

1 Результаты выполненного нами сравнительного анализа схем и методов химводоочисток позволили выделить основные направления технологического совершенствования схемы химического обессоливания на Волгодонской АЭС , предусматривающие технологию переработки солевого концентрата стоков и шлама ХВО и получением из них готовых товарных продуктов.

2 Разработана и реализуется на практике схема ХВО Волгодонской АЭС с многоцелевым безотходным использованием исходной воды из Цимлянского водохранилища путем получения:

Химически обессоленной воды для энергетических потребителей;

15%-ного раствора NaCl и активной извести, используемых вновь в замкнутом цикле водоподготовки;

Наполнителя бетонных смесей на основе шлама ХВО для кондиционирования радиоактивных отходов;

Керамических, термоизоляционных и защитных от ионизирующих излучений плит и упаковок на основе шлама ХВО.

3 В результате физико-химических исследований установлено, что шламы ХВО ТЭС и Волгодонской АЭС обладают более интенсивной реакционной способностью, чем некоторые природные материалы (например, мел и др.); благодаря тонкодисперсному и однородному составу, шлам естественно вписывается в технологические процессы производства из него строительных изделий.

4 Результаты гамма-спектрометрических исследований образцов шлама Волгодонской АЭС показали, что сумма отношений удельных активностей радионуклидов, содержащихся в шламе на 2 порядка меньше нормативной "Минимально значимой удельной активности" (Ао/МЗУА=0,019), а эффективная удельная активность шлама (Аэф) на порядок меньше критерия «Норм радиационной безопасности » , т.е. АЭфЛЭС= 30,1 Бк/кг

5 Методом полного факторного эксперимента разработана математическая модель в виде системы уравнений регрессии, позволяющая определять оксидный состав шлама (шесть основных окислов) по данным о качестве исходной воды

I ^ мутность, рН, жесткость по Са и др.) и давать оценку целесообразности дальнейшего использования шлама в качестве сырьевого компонента изделий.

6 В результате исследования технологических свойств сырьевых масс на основе шламов ТЭС и АЭС установлено, что качество изделий (Ки) является функцией многопараметрических факторов:

Ки= f(Xc,d.; Мщи; Mgu; dt/dr; tmax; Экспериментально полученные термографические зависимости процесса спекания масс показывают (рис. 3.1), что включение шлама в их состав технологически предпочтительнее природных карбонатных материалов.

7 Установлены пределы рецептурного соотношения щелочноземельных и щелочных оксидов в исходных массах, повышающие интенсивность спекания и прочность изделий. Это соотношение определено как рецептурный модуль:

Мр = R0/R20 = (CaO+MgO) / (Na20+K20) Физико-химическими методами исследования выявлен механизм формирования структуры спекаемых масс при значениях модуля от 3,4 до 5,9. Показано, что прочность бетонных смесей на основе шлама ХВО конкурентоспособна с прочностью бетонов на природных известняках - ракушечниках.

8 Получены новые экспериментальные и расчетные данные об активации шлама ХВО ВоАЭС при облучении его 7-квантами и тепловыми нейтронами определенной интенсивности. Предложена математическая зависимость наведенной активности (Снав) компонентов шлама от периода их полураспада. Установлено, что использование теплоизоляционных и защитных изделий на основе шлама в помещениях АЭС с определенной интенсивностью ионизирующих излучений не представляет опасности в отношении наведенной активности для обслуживающего персонала.

9 Предложена и экспериментально проверена технология получения активной извести из шлама ХВО Волгодонской АЭС методом его скоростной термообработки. Технологические испытания контрольных проб извести, полученной из шлама ХВО ВоАЭС и из природного известняка показали, что в соответствии с ГОСТ 9179-77, известь из шлама относится к категории быстрогасящихся материалов и по критериям качества может быть использована вторично в замкнутом цикле водоподготовки ВоАЭС.

10 Показано, что бетонные смеси, термоизоляционные изделия, известь, керамика и другое экономически целесообразнее производить непосредственно на ТЭЦ и АЭС, в первую очередь для собственных нужд. При этом существенно снижаются затраты на транспортировку шлама, тепловую, электрическую энергию, технологические операции, расходы на хранение шлама и другое, по сравнению с вариантом создания автономного производства, вне ТЭС и АЭС, для этих целей.

11 Установлено, что получение дополнительной товарной продукции из шлама и концентрированных стоков ХВО снижает себестоимость 1 м3 обессоленной воды до 0,55 руб/м3.

Список литературы диссертационного исследования кандидат технических наук Паламарчук, Александр Васильевич, 2004 год

1. Лучшие электростанции мира за 1994г. // Мировая электроэнергетика, 1995. №2. с.37.

2. Лучшие электростанции мира за 1995г. //. Мировая электроэнергетика, 1996. №1. с.ЗЗ.

3. Strauss S.D. Zero discharge firmly entrenched as a powerplant design strategy. // Power. 1994. №10. p.41-48.

4. Мадоян A.A. Будущее за многоцелевыми технологиями. //Донская быстрина. Газета. №6, ноябрь, 2002. с.4.

5. Нетрадиционные технологии основной путь обеспечения экологической надежности и ресурсосбережения. / Дьяков А.Ф., Мадоян А.А., Левченко Г.И. и др. // Энергетик, 1997. №8.с.2-6.

6. Седлов А.С., Шищенко В.В., Чебанов С.Н. и др. Малоотходная технология переработки сточных вод на базе термохимического обессоливания. //Энергетик, 1996. №11. с. 17-20.

7. Умягчение воды ионитами /А.В.Мальченко, Т.Н. Якимова , М.С. Новоженюк и др.//Химия и технология воды 1989, т.2, №8 с. 58-68.

8. Седлов А.С., Васина Л.Г., Ильина И.П. Многократное использование сточных вод в схеме водоподготовки. // Теплоэнергетика, 1987. №9. с.57,58.

9. Шищенко В.В., Седлов А.С. Водоподготовительные установки с утилизации сточных вод. //Промышленная энергетика, 1992. №10. с. 29.

10. Water Treatment Plant Design. American Society of Cie Engineers. American Water Works Association. Second Edit McGrow-Yill Publishing Company, 1990.

11. Использование шламов ХВО для производства народнохозяйственной продукции / А.В. Нубарьян , Н.Д. Яценко, К.С. Сонин, А.К. Голубых // Теплоэнергетика, 1999. №11. с.40-42.

12. Экологические проблемы осветления воды и утилизации шламов на ТЭЦ АО "Мосэнерго" / А.Н. Ремезов , Г.В. Преснов, A.M. Храмчихин и др. // Теплоэнергетика, 2002. №2. с.2-8.

13. Водоподготовка. Процессы и аппараты. / Под ред. О.И. Мартыновой. М.: Атомиздат, 1977. с.328.

14. Стерман JI.C., Покровский В.Н. Химические и термические методы обработки воды на ТЭС . Учеб. пособие для ВУЗов. М.: Энергия, 1991. с.328.

15. ВихревВ.Ф., Шкроб М.С. Водоподготовка. М.: Энергия, 1973. с.420.19.0бработка воды на тепловых электростанциях. / Под ред. В.А. Голубцова.1. М.: Энергия, 1966. с.448.

16. Маргулова Т.Х., Мартынова О.И, Водные режимы тепловых и атомных электростанций. М.: Высшая школа. 1981. с.320.

17. Водный режим тепловых электростанций. / Под ред. Т.Х. Маргуловой . М.,Л.: Энергия, 1965. с.485.

18. Бабенков Е.Д. Очистка воды коагулянтами. М.: Энергия, 1973. с.420.

19. Гурвич С.М., Кострикин Ю.М. Оператор водоподготовки. М.: Энергоиздат, 1981. с.304.

20. Нормы технологического проектирования тепловых электрических станций./ВНТП81. МЭиЭ СССР , 1991.

21. Стерман Л.С., Можаров Н.А., Лавыгин В.М. Технико-экономический анализ работы многоступенчатых испарительных установок. // Теплоэнергетика, 1968. №11. с.26-30.

22. Теоретическое и экспериментальное обоснование способов обессоливания воды с многократным использованием регенерационного раствора. / А.С.

23. Седлов, В.В. Шищенко , С.Н. Чебанов и др. // Теплоэнергетика, 1995. №3. с.64-68.

24. Ларин Б.М., Дробот Г.К., Парамонова Е.А. Выбор и расчет оптимальной схемы обессоливания воды. // Изв. ВУЗов. Энергетика, 1982. №11. с.50-54.

25. Фейзиев Г.К. Высокоэффективные методы умягчения, опреснения и обессоливания воды. М.: Энергоатомиздат, 1988.

26. Технологическое и экологическое совершенствование водоподготовительных установок на ТЭС. / Ларин Б.М., Бушуев Е.Н., Бушуева Н.В. // Теплоэнергетика, 2001. №8. с.23-27.

27. Методические указания по проектированию ТЭС с максимально сокращенными стоками. М.: Минэнерго СССР, 1991.

28. Small-waste technology of water desalination at thermal power station. / A.S. Sedlov, V.V. Shischenko, V.F. Ghidikih, e.a. //Desalination. 1999. №126. p.261-266.

29. Промышленное освоение и унификация малоотходной технологии термохимического умягчения и обессоливания воды. / А.С. Седлов , В.В. Шищенко, И.П. Ильина и др. // Теплоэнергетика. 2001. №8. с.28-33.

30. Нубарьян А.В. Разработка рациональных способов получения экологически чистой продукции из шламовых отходов ТЭС: Дис. Канд. техн. наук. Новочеркасск.: ЮрГТУ (НПИ ), 2000.

31. Солодяников В.В., Кострикин Ю.М., Тарасов А.Г. Промышленное использование минеральных осадков стоков химводоочисток . // Энергетик, 1986. №6. с.8,9.

32. Кострикин Ю.М., Дик Э.П., Корбут К.И. Возможности использования шлама после известкования. // Энергетик. 1977. №1. с.7,8.

33. Саморядов Б.А., Горден Н.Ф., Потехин В.Ю. Использование шлама осветлителей ХВО для очистки сточных вод от нефтепродуктов. // Электрические станции, 1982. №8. с. 18-20.

34. Шульга П.Г. Опыт эксплуатации шламоуплотнительной станции на Лисичанской ТЭС. // Энергетика и электрификация, 1979. №4. с.24,25.

35. Лабезнов П.П., Носулько Д.Р., Лабезнова Е.Н. Применение шлама водоподготовительных установок в сварочном производстве. // Энергетика и электрификация, 1985. №7. с. 37-40.

36. Илиополов С.К., Андриади Ю.Г., Баранова Е.М., Мардиросова И.В. Асфальтобетонная смесь с использованием полибутадиенового каучука и шлама химводоочистки ТЭЦ. // Сб. II Международной НТК . Омск, 1998. с.153-154.

37. Андриади Ю.Г. Комплексно-модифицированное полимерно-битумное вяжущее для верхних слоев асфальтобетонных покрытий. // Диссер. канд. техн. наук. РИСИ. Ростов-на-Дону. 1999.

38. Мадоян А.А., Ефимов Н.Н., Нубарьян А.В. и др. О целесообразности применения термического обезвреживания отходов ТЭС. // Тез. докл. междунар. научн-техн. семинара "Экология строительства и эксплуатации зданий и сооружений", М.: 1997. с.98-101.

39. Мадоян А.А. Перспективы использования ресурсосберегающих технологий. // Тез. докл. междунар. научн-техн. семинара "Экология строительства и эксплуатации зданий и сооружений". М.: 1977. с.95-97.

40. Обеспечение экологической безопасности выбросов химводоочистки АЭС . / Паламарчук А.В., Мадоян А.А., Лукашов М.Ю., Нубарьян А.В. // Теплоэнергетика, 2002. №5. с.75-77.

41. Васильев Е.К., Нахмасон М.С. Качественный рентгенофазовый анализ. Новосибирск: Наука, 1986.

42. Миркин М.И. Рентгеноструктурный анализ. Получение и измерение рентгенограмм. / Справочное руководство. М.: Наука, 1976. с.863.

43. Уэндланд У.У., Термические методы анализа. М.: Мир, 1978. с.526.

44. Санитарные правила обращения с радиоактивными отходами. СПОРО-85. МЗ СССР. М.: 1986.

45. Нормы радиационной безопасности (НРБ -99). М.: Минздрав России, 1999.

46. Радиационно-гигиенический контроль промышленных отходов и сырья предприятий Минтопэнерго РФ, используемых при производстве стройматериалов. Методические указания. М.: 1992.

47. Методические указания по испытанию глинистого сырья для производства обыкновенного и пустотелого кирпича, пустотелых керамических камней и дренажных труб. // М.: МПСМ. СССР, 1975.

48. Топоров Н.А., Булак Л.Н. Лабораторный практикум по минералогии, Л.: Стройиздат, 1969. с.238.

49. Микроскопический анализ состава и качества силикатных изделий: Метод указания к лаб. работам. Новочеркасск: НПИ, 1986. с.23.

50. Термодинамический анализ регенерации извести из шламов химводоподготовки на ТЭЦ. / А.Н. Емельянов , В.В. Салодяников. // Электрические станции. 1999. №1. с.40-42.

51. Экология строительства и эксплуатации зданий и сооружений». М.: 1998. с. 19-23.

52. Маслов И.А., Лукницкий В.А. Справочник по нейтронному активационному анализу. //Л.: Наука, 1971. с.320.

53. Лысенко Е.И. Структурные особенности и физическая стойкость бетонов на известняково-ракушечниковых заполнителях: Диссертация канд. техн. наук. РИСИ. Ростов-на-Дону. 1970.

54. Нубарьян А.В., Чувараян Х.С., Яценко Н.Д. Производство керамических стеновых изделий с применением шламовых отходов ТЭС. // Энергетик, 2000. №8. с. 13-15.

56. Павлов В.Ф. Фазовые превращения при обжиге глин различного минералогического состава с добавкой смесей щелочных и щелочноземельных оксидов. // Труды НИИстройкерамики, М.:1972. -Вып.35-36. с.20,177-182.

57. Грум-Гржимайло О.С., Квятковская К.К. К вопросу деформаций облицовочной плитки при обжиге. // Гр. / НИИстройкерамики, М.: 1973. -Вып.37. с.68-74.

58. Яценко Н.Д., Зубехин А.П., Ратькова В.П. Особенности процесса спекания облицовочной плитки при использовании тугоплавких глин и отходов обогащения. // Современные проблемы строительного материаловедения: Матер, междунар. конф. Самара, 1995. с.42-43.

59. Ресурсосберегающая технология производства облицовочных плиток. / А.П. Зубехин , Н.В. Тарабрина, Н.Д. Яценко, В.П. Ратькова // Стекло и керамика, 1996. №6. с.3-5.

60. Яценко Н.Д., Паламарчук А.В. Обеспечение безотходных режимов водопользования химводоочисток ТЭС и АЭС. // Экология промышленного производства, 2002. №2. с. 27-29

61. Теоретические основы планирования экспериментальных исследований. / Под редакцией Г.К. Круга. Москва, МЭИ , 1973. с. 180

62. Мойсюк Б.Н. Элементы теории оптимального эксперимента. 4.1. / Москва, МЭИ, 1975. с.120.

63. Мойсюк Б.Н. Элементы теории оптимального эксперимента. 4.2. / Москва, МЭИ, 1976. с.84.

64. Паламарчук А.В. Активация шлама водоподготовки Волгодонской АЭС. // Известия СКНЦ ВШ Техн. Науки, 2003. №1.

65. Паламарчук А.В. Проблемы и пути совершенствования схем водопользования на электростанциях. // Материалы XXIV сессии семинара «Кибернетика электрических систем » по тематике «Диагностика энергооборудования ». Новочеркасск, ЮрГТУ (НПИ), 2002.

66. Паламарчук А.В., Петров А.Ю., Дерий В.П., Шестаков Н.Б. Опыт строительства и ввода в эксплуатацию энергоблока №1 Ростовской АЭС. // Теплоэнергетика, 2003, №5. с. 4-8.

67. Паламарчук А.В.Обеспечение безотходных режимов водопользования химводоочисток ТЭС и АЭС // Экология промышленного производства, 2002, №2. с. 27-29.

68. Паламарчук А.В.Обеспечение экологической безопасности выбросов химводоочистки АЭС // Теплоэнергетика, 2002, №5. с. 75-77.

69. Паламарчук А.В., Поваров В.П., Мадоян А.А. Использование шламов ВПУ АЭС и ТЭС как вторичного сырья // Материалы IV международной конференции "Перспективные задачи инженерной науки" Игало (Черногория), МИА, 2003

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания.
В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.

Заместитель генерального директора
ЗАО «ИКС А» по науке и новой технике
Доцент Челябинского филиала
Петербургского Энергетического Института
Салашенко О.Г.


Водоподготовка неизбежно связана со сбросом сточных вод (солевых стоков) в окружающую среду. Требования к количественному и химическому составу стоков во многом определяется состоянием и устойчивостью гидросферы к внешнему воздействию.

В водоизбыточных районах или в районах водоисточников с большим дебитом воды, минерализация исходной воды относительно низкая, и сброс сточных вод не приводит к существенному ухудшению качества природной воды. В этих случаях проблема сточных вод сводится к платежам за сброс стоков. Величина платежей невысока и существенно не увеличивает себестоимость очищенной (обессоленной) воды. Такая ситуация устраивает всех: и природоохранные органы, и предприятия.

В вододефицитных районах минерализация водных источников высокая, и даже относительно небольшие сбросы приводят к превышению ПДК по ряду показателей и существенному ухудшению качества природной воды. Платежи за сбросы резко увеличиваются: возрастают собственно платежи за солевые сбросы, появляются штрафные санкции за сброс веществ выше ПДК. Однако, и в этих случаях чаще всего доля платежей за сброс в структуре себестоимости воды остается приемлемой. Ситуация осложняется, если состояние гидросферы таково, что природоохранные органы вынуждены требовать существенное повышение качества сточных вод или полное их устранение.

Совершенствование методов подготовки воды сопровождается повышением их экологических характеристик. Во многих случаях достаточно перейти на новые способы водоподготовки, чтобы существенно уменьшить платежи за сброс стоков и избежать штрафных санкций. Например, противоточное ионирование позволяет существенно повысить качество обработанной воды, уменьшить количество фильтров и в 1,5 – 2 раза снизить расход реагентов. Снижение расхода реагентов способствует уменьшению количества и солесодержания стоков. В некоторых случаях этого достаточно для снижения платежей за стоки до приемлемых величин. Безусловными лидерами экологических характеристик являются мембранные технологии и термическое обессоливание. Современные мембранные технологии и термическое обессоливание позволяют провести обессоливание воды со сбросом в водоисточники только тех солей, которые поступили на водоподготовительную установку с исходной водой. Данные технологии не всегда позволяют решить эту проблему. В некоторых случаях природоохранные органы настаивают на ликвидации стоков. Представляет интерес оценить, какие существуют возможности по ликвидации стоков водоподготовительных установок (переработки стоков) и каких это потребует затрат.

При переработке стоков первым этапом является их концентрирование, то есть уменьшение объема. При концентрировании стоков основная проблема, с которой приходится сталкиваться, это предотвращение зарастания оборудования солями жесткости. В ЗАО «ИКСА» разработана технология, позволяющая производить глубокое концентрирование воды без зарастания оборудования солями жесткости, и существенно упростить и удешевить переработку стоков. Данная технология позволяет получать из стоков обессоленную воду и выводить из перерабатываемых стоков соли кальция в виде карбоната кальция и гипса, и магний в виде гидроксида магния. Соли выводятся в виде кристаллического продукта, который может складироваться на шламонакопителе, затем полезно использоваться.

Технология основана на использовании испарителя мгновенного вскипания (ИМВ). Технологическая схема установки приведена на рис.1. ИМВ представляет собой многоступенчатый аппарат с принудительной циркуляцией, количество ступеней в котором может меняться от 8 до 18. ИМВ ЗАО «ИКС А» имеет вертикальную компоновку, с расположением ступеней друг над другом. В связи с этим, несмотря на большое количество ступеней, аппарат имеет небольшие габариты. Так, ИМВ-50-16 (производительность 50 т/ч) имеет длину 7 м, высоту 6,8 м, ширину 5 м. Количество ступеней определяется необходимой тепловой эффективностью установки. Для работы 16-ти ступенчатого ИМВ на одну тонну перерабатываемой воды необходимо произвести 0,125 тонны пара. ИМВ является вакуумным аппаратом с рабочим диапазоном температур в испарителе 100-40 о С, поэтому для его работы достаточно использовать пар под давлением 0,12 МПа. Испаритель может состоять как из одного, так и из двух контуров. При двухконтурном исполнении температурный режим первого контура составляет 100 – 70 о С, второго - 70 – 40 о С.

Испаритель работает следующим образом. Циркуляционная вода после подогревателя 1 с температурой 100 °С поступает в камеры расширения испарителя и далее последовательно сверху вниз попадает в остальные камеры. В каждой камере расширения вода вскипает, охлаждаясь затем на 3-4 °С. Образовавшийся пар конденсируется на трубках конденсатора, отдавая тепло циркуляционной воде. Дистиллят стекает на днище камеры конденсации и далее каскадно перемещается по ступеням. Из последней ступени корпуса дистиллят поступает в дистиллятный бак 8 и из него насосом 7 подается потребителю. Температура дистиллята после первого контура составляет 70 °С, после второго корпуса 40 °С. Циркуляционная вода после корпуса испарителя поступает в циркуляционный бак 5 и затем подается насосом 6 в трубную систему конденсаторов испарителя, где она подогревается, конденсируя пар. В первом корпусе циркуляционная вода подогревается до температуры 94°С, затем до 100°С подогревается в головном подогревателе 1 паром 1,2 ата. Пар последней ступени расширителя конденсируется на трубках конденсатора, охлаждаемых исходной водой, поступающей в химцех. Концентрация солей в циркуляционном контуре поддерживается продувкой испарителя. Вакуум в испарителе поддерживается водоструйным эжектором. Отсос неконденсируемых газов производят из последней ступени.

Питательная вода поступает в первый контур. Продувка первого контура является питательной водой второго контура. Концентрирование воды в первом контуре не более 2, во втором концентрирование устанавливают в зависимости от требований технологии. Низкие температуры, отсутствие кипения на поверхностях нагрева, двухконтурная схема позволяют эффективно использовать ингибиторы накипеобразования для предотвращения образования отложений и избегать температурных превращений солей. Питание испарителя можно производить жесткими стоками без предварительного умягчения.

Используемые в настоящее время ингибиторы накипеобразования являются эффективным средством предотвращения отложений солей, но имеют вполне определенные условия использования, как в отношении температур, так и в отношении концентраций солей кальция. С помощью только ингибиторов накипеобразования глубокое концентрирование воды произвести невозможно. Для обеспечения данного процесса в технологическую схему испарителя включен специальный отстойник. Отстойник предназначен для вывода солей кальция из воды, и поддержания их концентраций в пределах, которые может стабилизировать ингибитор. Для осаждения солей кальция воду в отстойнике обрабатывают специальным реагентом Р-2. Р-2 представляет собой смесь реагентов Na 3 PO 4 , NaOH, Ca(OH) 2 , Na 2 CO 3 . Соотношение компонентов в смеси зависит от химического состава стоков. Для кристаллизации солей кальция воду обрабатывают специальным щелочным реагентом Р-2. Состав реагента определяется солевым составом стоков.

В отстойнике организуют кристаллизацию солей кальция (сульфата и карбоната кальция), при необходимости и магния. Осадок отделяют от маточного раствора и отводят на шламонакопитель. Умягченную воду возвращают в цикл для дальнейшего концентрирования.

В большинстве случаев расход реагента составляет 5 – 20 % от всего количества выводимых солей кальция (от стехиометрии). Стоимость реагента составляет 4 000 – 12 000 руб/т.

Такая технология позволяет производить чрезвычайно глубокое концентрирование стоков. Величина концентрирования определяется солевым составом стоков, прежде всего соотношением солей жесткости, щелочности и концентрации сульфатов. Во многих случаях удается сбалансировать соли жесткости со щелочностью и сульфатами. При этом степень концентрирования определяется концентрацией хлоридов в стоках. Например, при балансе жесткости со щелочностью, сульфатами и концентрации хлоридов в стоках 100 мг/дм 3 , концентрирование стоков может составить 10 3 ед. . Количество стоков может быть уменьшено со 100 м 3 /ч до 0,1 м 3 /ч. Дальнейшая переработка 0,1м 3 /ч стоков особых проблем и затрат не вызывает.

Работа испарителей связана с потреблением определенного количества пара и соответствующими затратами. На ТЭС и многих промышленных предприятиях перед подачей воды на водоподготовительную установку её предварительно подогревают паром. Количество пара используемого для предварительного подогрева воды достаточно для работы испарителей и выпарных аппаратов установки переработки стоков. Поэтому пар подают в головной подогреватель ИМВ, а предварительный подогрев воды производят в последних ступенях ИМВ (см. рис.1.) В этом случае затраты связанные с потреблением пара ничтожно малы. На 1 тонну стоков необходимо, использовать 0,005 – 0,01 тонны пара.

Рассмотрим, как представленная технология позволяет решать проблемы переработки стоков различных водоподготовительных установок.

Стоки химического обессоливания. Характерный состав стоков химического обессоливания приведен в таблице 1.

Качество сточных вод химического обессоливания, мг-экв/дм 3
(Солесодержание исходной воды 5 мг-экв/дм 3 , собственные нужды 10 %, удельный расход реагентов 2 мг-экв/мг-экв.)

Таблица 1.

CC
мг/дм 3

Технология ЗАО «ИКС А» может обеспечить концентрирование раствора в 10 – 50 раз в зависимости от солевого состава сходных стоков, и вывести из раствора соли жесткости и сульфаты. В случае, если сброс воды в водоем невозможен, соли направляют на соленакопитель или производят выпарку раствора до получения кристаллического продукта. Технология выпарки солей с получением кристаллического продукта известна. Возможна тотальная выпарка с получением смеси солей, либо дробная кристаллизация с получением достаточно чистого сульфата натрия (95 % от общего количества солей) и небольшого количества смеси солей сульфата и хлорида натрия. При наличии потребителей соли последняя используется далее по назначению, при отсутствии потребителей необходим соленакопитель. Для установки производительностью 100 м 3 /ч обессоленной воды количество сбрасываемых солей составит около 800 т/год. Соленакопитель является самой затратной и проблемной частью установки.

Представляет интерес оценка объёма стоков, с которым приходится работать. При производительности обессоливающей установки 100 м 3 /ч, стоки (собственные нужды) составят 10 м 3 /ч, после упаривания на ИМВ объём стоков уменьшится до 0,5 - 1 м 3 /ч. Выпарной аппарат после ИМВ имеет небольшие размеры. При дробной кристаллизации для каждой соли нужен отдельный выпарной аппарат. Первый выпарной аппарат будет иметь производительность 0,8 м 3 /ч, второй - 0,2 м 3 /ч, третий 0,1 - 0,01 м 3 /ч. Выпарные аппараты по производительности приближаются к лабораторным установкам.

Стоки натрий-катионитовой установки. Большое значения для переработки стоков приобретает назначение натрий-катионитовой установки. При использовании установки для подпитки теплосети стоки будут состоять из смеси солей: СаСl 2 , MgСl 2 и NaСl 2 . Перерабатывать такие стоки очень сложно. Технически проще и экономически выгоднее сменить технологию подготовки воды для теплосети путем перехода на ингибиторы накипеобразования. В случае невозможности обеспечить предотвращения отложений с помощью только игибиторов из-за низкого качества воды, дополнительно можно провести известкование или подкисление воды.

При использовании натрий-катионирования для подпитки котлов или испарителей получают два вида стоков: солевые стоки нитрий-катионирования и продувку котлов или испарителей. Возможный солевой состав стоков приведен в таблице 2.

Солевой состав стоков, мг-экв/дм 3

Таблица 2.

ОН - + CO 3 2-

CC
мг/дм 3

Стоки натрий-катионирования

Продувка котлов

Продувка испарителей

В стоках натрий катионирования много ионов кальция и магния, в продувках - много карбонатов и гидратов. При смешивании стоков кальций и магний выпадут в осадок. Умягченные стоки можно повторно использовать для регенерации фильтров. Концентрация стоков (восстановленного регенерационного раствора) будет ниже, чем требуется для регенерации фильтров. Упаривание раствора до нужной концентрации возможно с помощью технологии ЗАО «ИКС А».

В стоки пойдут только соли, поступившие на установку с исходной водой. Общее количество сбрасываемых солей уменьшится в 5 – 10 раз.

Стоки обратного осмоса. Наибольшую популярность приобретают установки обессоливания воды, работающие по схеме: обработка воды ингибитором отложений (антискалантом) - ультрафильтрация - обратный осмос – электродеионизатор. Установка позволяет произвести глубокое обессоливания воды с расходованием минимального количества реагентов. Собственные нужды установки (количество сточных вод) достигает 33 %. Для уменьшения собственных нужд на стоках используют дополнительную установку обратного осмоса производительностью 20 – 25 % от производительности основной установки. Собственные нужды при этом снижаются до 10 – 15 %. Характерный состав стоков приведен в таблице 3. В стоках имеет место высокая концентрация карбоната кальция. Для дальнейшей переработки стоков необходимо решить прежде всего проблему кристаллизации карбоната кальция. Простейший подход: подкисление – декарбонизация. При этом расход кислоты будет значительно большим, и в стоках возрастет количество солей, которые необходимо выводить. Возможно известкование стоков. При этом количество солей в стоках не увеличивается, но расход извести возрастает. Оптимальным методом является термоумягчение стоков. В 60 - 70–ые годы такие технологии успешно разрабатывались и эксплуатировались.

Качество воды мембранной обессоливающей установки

Таблица 3.

CC
мг/дм 3

Исходная вода

Стоки обессоливающей установки

Продувка ИМВ

После термоумягчения стоки можно сконцентрировать по технологии ЗАО «ИКС А», с выводом солей жесткости и затем провести кристаллизацию солей натрия. Принципиальная технологическая схема установки приведена на рис. 2. Установка включает термоумягчитель, шламоуплотнитель, ИМВ, отстойник, выпарную установку.

Стоки подают в термоумягчитель, где их подогревают до 80 – 100 о С и обрабатывают паром. При этом происходит кристаллизация карбоната кальция. Раствор, содержащий шлам карбоната кальция, подают в шламоуплотнитель. В шламоуплотнителе производится отделение шлама от маточного раствора. Шлам направляют на шламонакопитель. Осветленный раствор обрабатывают ингибитором отложений и подают в ИМВ. В ИМВ раствор упаривают в 50 – 200 раз в зависимости от качества стоков и направляют на выпарную установку. В соответствии с технологией в контур ИМВ включен отстойник. В отстойнике стоки обрабатывают реагентом Р-2. В процессе обработки происходит осаждение остаточного (после термоумягчителя) карбоната кальция и сульфата кальция. Одновременно производится осаждение кремнекислоты, солей магния и органических веществ. Шлам направляют на шламоуплотнитель. Осветленный концентрат подают на выпарную установку. На выпарной установке производят тотальную выпарку стоков с получением кристаллического хлористого натрия.

Шлам – мел, гипс может быть использован как исходное сырьё в строительной индустрии. Наличие в шламе магния не ухудшает его строительных характеристик. Поваренная соль может быть использована на натрий-катионитовых установках. (В промышленности остается и будет оставаться большое количество натрий-катионитовых установок различной мощности.)

Дистиллят ИМВ будет иметь солесодержание 0,5 - 1 мг/дм 3 , и может быть направлен на электродеионизатор, для более глубокого обессоливания.

Такая установка позволяет получить минимальное количество шлама и солей, полезный продукт - обессоленную воду, при потреблении минимального количества реагентов. Для обессоливающей установки производительностью 100 м 3 /ч, производительность установки переработки стоков составит 10 – 15 м 3 /ч, причем выпарная установка будет имеет производительность 0,15 м 3 /ч.

Количество и состав выводимых солей зависит от качества исходной воды. В таблице 3 приведено качество воды р. Волга. Однако, свести стоки к получению шлама карбоната кальция, сульфата кальция, гидроксида магния и кристаллической поваренной соли можно в 80 – 90 % случаев качества воды, водоисточников в РФ.

Продувка (стоки) оборотной системы охлаждения (градирни). Оборотные системы охлаждения занимают особое место в системе образования стоков. В большинстве случаев они являются главным источником поступления солей на ТЭС, например, блок 200 МВт, работающий в конденсационном режиме. Подпитка оборотной системы охлаждения составляет 400 – 500 м 3 /ч, подпитка основного цикла обессоленной водой составляет 25 – 35 м 3 /ч. Эти два потока являются основными источниками солей, поступающих в стоки. При этом из оборотной системы в стоки поступает 92 – 95 % солей, с обессоливающей установки - 5 – 8 % солей, если использовалась мембранная технология. На предприятиях с обессоливанием по технологии ионного обмена, доля солей с обессоливающей установки возрастет до 15 – 25 %. В любом случае, главной задачей является ликвидация стоков оборотной системы охлаждения. Проработка вариантов показывает, что стоки обессоливания могут быть переработаны попутно, без существенного изменения технологии переработки продувки градирни.

Материальный баланс градирни записывается формулой:

Д = Ис + Ку + Пр,

где Д – расход воды подаваемую в оборотную систему охлаждения;

Ис – потери с испарением;

Ку – потери с капельным уносом;

Пр – продувка градирни.

Отношение К = Д / Ку + Пр определяет кратность концентрирования воды в оборотной системе охлаждения. Кратность концентрирования необходимо поддерживать в определенных пределах для обеспечения, прежде всего безнакипного режима работы конденсаторов. Ку определяется наличием и эффективностью каплеуловителей в градирне. Без каплеуловителей коэффициент капельного уноса составляет 0,5 % от расхода циркуляционной воды, с каплеуловителями коэффициент капельного уноса равен 0,05 % и меньше. Для заданной величины К сумма Ку + Пр постоянная. При установке каплеуловителей необходимо увеличивать продувку оборотной системы на величину снижения капельного уноса. В связи с этим, величина капельного уноса практически не влияет на водопотребление оборотной системы охлаждения. Капельный унос влияет только на работу электрических распределительных устройств. Значительное количество электростанций работает с градирнями без каплеуловителей, не испытывая особых проблем на распредустройствах от влаги с градирни. Целесообразно выбирать каплеуловители с определенной эффективностью. Высокая эффективность каплеуловителей приводит к увеличению продувки градирни и стоков.

Для ликвидации стоков необходимо обеспечить работу градирни в беспродувочном режиме. При Пр = 0 на градирнях без каплеуловитлей К составляет 4 ед., на градирнях с каплеуловителями 40 ед. Концентрирования воды высокие и для обеспечения надежного водно-химического режима оборотной системы необходимо решить следующие проблемы:

Предотвращение отложений карбоната кальция;

Предотвращение коррозии металла;

Предотвращение коррозии бетона.

Наиболее эффективной системой предотвращения отложений карбоната кальция является обработка воды фосфанатами в сочетании с известкованием циркуляционной воды. Известкование позволяет поддерживать концентрацию карбоната кальция в пределах, необходимых для эффективной работы фосфанатов. Известкование воды производят на обычных осветлителях по известной технологии. Производительность осветлителей относительно невелика. Например, для блока 200 МВт достаточно производительности осветлителя около 100 - 200 м 3 /ч, в зависимости от качества исходной воды. Безнакипный режим обеспечивается как в системах с градирнями без каплеуловителей, так и с каплеуловителями. Отличие сводится к выбору производительности осветлителя.

Проблема предотвращения коррозии металла решается подбором соответствующей марки сплава. В большинстве случаев при использовании градирни без каплеуловителй достаточна установка в теплообменниках трубок из сплава МНЖ-5-1. В оборотных системах с градирнями, имеющими каплеуловители, этого недостаточно. Солесодержание воды в оборотной системе может достигать очень больших величин. Например, для воды, характеристики которой приведены в таблице 3, солесодержание воды в оборотной системе составит 9 000 мг/дм 3 . Для предотвращения коррозии необходимо использование специальных сплавов типа мельхиора.

Для предотвращения коррозии бетона концентрация сульфатов в воде оборотной системы не должна превышать 600 – 800 мг/дм 3 . В оборотных системах с градирнями без каплеуловителей проблем с сульфатами в большинстве случаев нет. В оборотных системах с каплеуловителями концентрация сульфатов может превышать указанные цифры на порядок. Например, для качества воды, приведенной в таблице 3, она составит 3500 мг/дм 3 , для воды в районе г. Казань концентрация сульфатов составит 8 500 мг/дм 3 . Для водно-химического режима оборотной системы охлаждения условия коррозии бетона являются определяющими.

Из условий предотвращения коррозии бетона продувка оборотной системы для блока 200 МВт и воды, приведенной в таблице 3, должна быть 35 м 3 /ч. Солесодержание циркуляционной воды при этом составит 2 100 мг/дм 3 (с учетом солей жесткости, выводимых в осветлителе), что существенно упростит проблему коррозии металла.

Для переработки продувки градирни может быть использована установка, созданная на основе технологии ЗОА «ИКСА». Технологическая схема обеспечения водно-химического режима оборотной системы охлаждения и переработки продувки приведена на рис.3. Технологическая схема включает осветлитель с обработкой воды известью и установку переработки стоков. Данная схема установки аналогична приведенной на рис. 2. В схеме отсутствует только термоумягчитель. На рис. 3 приведен также и материальный баланс схемы для блока 200 МВт и качества исходной воды, приведенной в таблице 3.

Твердыми (кристаллическими) продуктами переработки продувки градирни являются:

Поваренная соль (NaCl 98 - 99 %)

Первые два продукта переработки могут быть использованы как сырьё для строительной индустрии, поваренная соль - для регенерации натрий-катионитовых фильтров. Такой состав продуктов переработки является оптимальным. Для его получения необходимо проводить соответствующую балансировку солевого состава стоков с использованием NaOH или HCl. Например, для балансировки солей в стоках, приведенных в таблице 3, необходима их обработка HCl. Для блока 200 МВт расход технической соляной кислоты составит 70 т/год.

Качество обессоленной воды первого и второго контуров ИМВ, работающих на продувке градирни, существенно отличаются. В первом контуре получают обессоленную воду более высокого качества. Химический состав обессоленной воды приведен ниже в таблице 4.

Качество обессоленной воды

Таблица 4.

Наименование

Размерность

Первый контур

Второй контур

Электропр.

Обессоленная вода первого контура может быть использована для питания котлов давлением до 14 МПа. Обессоленная вода второго контура требует доочистки. При использовании котлов утилизаторов ПГУ доочистка необходима для обоих потоков. Доочистку можно провести на существующих обессоливающих установках. Расход обессоленной воды после ИМВ несколько превышает потребности котлов для ТЭС, работающих в конденсационном или теплофикационном режиме. При подаче воды с ИМВ обессоливающие установки будут работать на исходной воде очень низкого солесодержания. Расход реагентов на обессоливание и количество стоков будет ничтожно малым, что автоматически решит проблему стоков обессоливающей установки. При этом обессоливающую установку можно рассматривать и как резервную.

Капитальные затраты на установку стоков прежде всего зависят от возможности утилизации тепла, используемого для работы ИМВ. В последние ступени ИМВ желательно подавать охлаждающую воду, в два и более раз превышающую расход обрабатываемой воды. При этом, чем больше расход воды, подаваемой в последние ступени ИМВ, тем дешевле испаритель. Цена испарителя может меняться от 400 тыс. руб. на тонну обессоленной воды до 1000 тыс. руб. С учетом стоимости выпарной установки и инфраструктуры стоимость установки переработки продувки градирни составит 500 – 1100 тыс. руб. за тонну производительности.

Возможности утилизации тепла зависят прежде всего от расхода подпиточной воды теплосети. При относительно небольших и крупных тепловых сетях проблем с утилизацией тепла нет, и ИМВ можно изготавливать по минимальной стоимости.

Эксплуатационные затраты включают:

Стоимость тепла, подаваемого на установку. При развитых тепловых сетях она будет ничтожно мала;

Стоимость электроэнергии. Расход электроэнергии составляет 2,5 – 4 кВт/т;

Стоимость реагентов. 70 – 90 % от общего количества реагентов используется в осветлителе. Технология в осветлителе известна, поэтому нетрудно посчитать стоимость для каждого конкретного качества воды. Для качества воды, приведенного в таблице 3, затраты на реагенты для установки переработки продувки составят 1 – 2 руб/т. в пересчете на тону воды, подаваемой в ИМВ (без учета реагентов, подаваемых в осветлитель);

Общецеховые затраты.

Без учета общецеховых затрат себестоимость переработки воды на ИМВ и выпарной установки составит 10 – 15 руб./т. Обессоленная вода после ИМВ полезно используется: после доочистки подается на питание котлов. Если снести все затраты на обессоленную воду, подаваемую в котлы, удорожание обессоленной воды будет незначительным или даже произойдет удешевление. Снизятся затраты на реагенты, ионообменные материалы, нейтрализацию стоков, ремонтные работы, уменьшатся платежи за стоки.

Технология упаривания стоков с одновременным выводом из них сульфата кальция в виде кристаллического продукта позволяет по-новому рассматривать проблемы переработки стоков. Переработку стоков можно свести к получению полезных продуктов: обессоленной воды, сырья для строительной индустрии и поваренной соли. В представленном варианте переработка стоков исключает самый проблемный и дорогостоящий элемент - соленакопитель. В ряде случаев эксплуатационные затраты на переработку стоков можно полностью компенсировать использованием для подпитки котлов обессоленной воды, получаемой на установке переработки стоков. Капитальные затраты зависят от решаемых задач, возможности утилизации тепла и составляют 400 – 1200 тыс. руб на тонну перерабатываемых стоков.

Основу технологии составляют испаритель мгновенного вскипания и ингибиторы накипеобразования. В данном случае использовались исследования и проработки, выполненные в Урал ВТИ с 1970 по 1998 гг. В этот период Урал ВТИ был определен как головная организация по стокам ТЭС в системе ГТУ Минэнерго СССР. Работы велись в рамках создания необходимого оборудования (ИМВ) и исследования механизмов действия ингибиторов накипеобразования.

ИМВ успешно эксплуатируются на ряде электростанций. По сравнению с испарителями, изготовленными в 2000 – 2004 г., новые модификации более надежны и технологичны. Технология ингибирования накипеобразования широко используется в различных технологических процессах и её эффективность при правильном использовании сомнений не вызывает. Удачное сочетание этих двух технологий и позволило оптимизировать переработку стоков на современном уровне при минимальных затратах.

Сточной водой называется вода, использованная в технологи­ческих процессах и непригодная по своему качеству для дальней­шего использования на предприятии. Сточные воды, сбрасыва­емые в водоемы, загрязняют их, так как содержат вредные ве­щества.

Для охраны водоемов в СССР действуют «Правила охраны поверхностных вод от загрязнений сточными водами» Министер­ства здравоохранения и водного хозяйства, 1976 г. «Правилами» установлены нормативные требования к составу и свойствам воды в водоемах в зависимости от их использования, а также предель­ные допустимые концентрации веществ.

Предельной допустимой концентрацией вредного вещества (ПДК) в водоеме называется его концентрация, которая при еже­дневном воздействии на организм человека в течение длительного времени не вызывает каких-либо патологических изменений и заболеваний, обнаруживаемых современными методами исследо­ваний, а также не нарушает биологического оптимума в водоеме. Для сточных вод ПДК не нормируется и степень их очистки опре­деляется состоянием водоема после сброса сточных вод.

Производственные и отопительные котельные сбрасывают в водоемы следующие виды сточных вод:

Сточные воды водоподготовительных установок (химическая очистка питательной и подпиточной воды) и установок для очи­стки конденсата;

Воды, загрязненные нефтепродуктами;

Воды от обмывок наружных поверхностей нагрева паровых и водогрейных котлов;

Отработанные растворы после химической очистки оборудо­вания котельных цехов;

Воды гидрошлакоудаления котельных, сжигающих твердое топливо;

Коммунально-бытовые и хозяйственные воды; дождевые воды с территории котельной.

Наибольшее загрязнение водоемов происходит при сбросе сточных вод водоподготовительных установок; воды, загрязненной нефтепродуктами, воды от обмывок наружных поверхностей нагрева, отработанных растворов и загрязненной зады из систем гидрозолоудаления.

Уменьшение вредностей, сбрасываемых сточными водами в есте­ственные водоемы, возможно путем уменьшения количества сточ­ных вод или их очистки. В настоящее время отсутствуют приемле­мые технико-экономические решения глубокой очистки сточных вод от истинно растворенных примесей, поэтому в эксплуатации необходимо прежде всего стремиться к уменьшению количества сбрасываемых сточных вод.

Уменьшение количества сточных вод водоподготовительных установок должно осуществляться путем рационализации методов и схем водоподготовительных установок. Основным направлением совершенствования водоподготовительных установок является уменьшение расхода реагентов и воды на собственные нужды, а также повторное использование сточных вод в технологическом цикле котельной установки.

Основная масса промышленных и отопительных котельных для водоподготовительной установки использует водопроводную воду, применяя ионный обмен при обработке воды. При этом сбросы воды в ионнообменной части водоподготовительной установки довольно значительны (расчетный расход воды на собственные нужды водоподготовительной установки составляет 25% ее произ­водительности). Таким образом, для уменьшения сбросов воды наиболее перспективными являются: метод непрерывного иониро - вания воды, ступеичато-противоточное ионирование, термическая регенерация ионитов.

При сжигании жидкого топлива в промышленных и отопитель­ных котельных неизбежны его утечки, обусловленные организа­ционными и технологическими причинами. К организационным причинам относятся: нарушения сроков ремонта оборудования, нарушения технологического режима эксплуатации обслуживаю­щим персоналом и др. К технологическим причинам относится несовершенство технологии и конструкции подогревателей, насо­сов и др. В большинстве котельных при разгрузке мазута исполь­зуется острый пар для слива его из цистерн. Это приводит к обвод­нению мазута и при отстое его в мазутохранилище - к появлению подтоварных вод, требующих затем очистки. Для уменьшения стоков следует применять цистерны с паровой рубашкой и тепляки для разогрева цистерн с мазутом. В большинстве котельных очистка цистерн от остатков мазута производится путем их про­парки и промывки горячей водой, что заметно увеличивает коли­чество сточных вод, загрязненных мазутом. Значительное умень­шение количества сточных вод достигается при зачистке цистерн с помощью моющих синтетических препаратов при многократном использовании моющего раствора.

При эксплуатации железобетонных резервуаров следует кон­тролировать плотность стыков панелей, которая может нарушаться при неравномерной осадке резервуара.

Также следует своевременно устранять неплотности в подо­гревателях мазута.

При обмывке поверхностей нагрева паровых и водогрейных котлов, особенно при сжигании мазута, в обмывочной воде содер­жатся грубодисперсные вещества, свободная серная кислота, сажистые частицы, продукты коррозии, ванадий, никель, медь. Обмывочные воды перед сбросом должны быть очищены от указан­ных загрязнений. В промышленных и отопительных котельных желательно вместо обмывки наружных поверхностей нагрева при­менять другие способы их очистки.

Для сокращения сбросов от химических промывок и консерва­ции котлов следует сокращать число промывок и частично заме­нять воды иными агентами, например паром, применять сухие способы консервации. В последнее время используют обработку поверхностей нагрева комплексонами и композициями на их осно­ве. Это увеличивает сроки работы котлов без промывок, т. е. приводит к сокращению количества сбрасываемых сточных вод.

В центральных котельных большой мощности, работающих на твердом топливе, применяют систему гидрозолоудаления. В этих системах зола вместе с водой направляется на золоотвалы, где грубодисперсные примеси отстаиваются, а осветленная вода сбрасывается в водоем или возвращается в котельную для частич­ного использования. В результате взаимодействия золы с водой в ней появляются вредные примеси, состав и количество которых зависит от химического состава золы. Для сокращения сбросов примесей из системы гидрозолоудаления систему переводят на работу по оборотной схеме.

Наиболее важными показателями осветленной воды систем гидрозолоудаления являются щелочность, концентрация сульфа­тов, суммарное содержание и концентрация отдельных токсичных примесей.


В настоящее время на всех тепловых электростанциях и котельных сбрасывается в водоемы значительное количество дренажных вод. Количество этих вод дости­гает 10% от количества воды, подготавливаемой для нужд ТЭС.

По происхождению стоки ТЭС и котельных делятся на четыре категории: стоки из технологических циклов; стоки ХВО при подготовке воды на восполнение потерь; ливневые и паводковые стоки; хозяйственно-бытовые стоки. Стоки из технологических циклов существующих ТЭС и котельных исторически сложились по следующим причинам:

1. Действовавшие в то время «Нормы проектирования» предусматривали понятие «условно чистые стоки», что позволяло проектировщикам с «чистой совестью» проектировать сброс в водоемы следующих стоков: непрерывной и периодической продувки котлов, испарителей; ливневых и паводковых стоков; разовых неорганизованных протечек от оборудования и трубопроводов; охлаждения подшипников основных и вспомогательных механизмов; продувки системы охлаждения в градирнях; опорожнения оборудования, баков, трубопроводов; сальниковых протечек, вращающихся механизмов. В эти стоки организованно ничего не подмешивалось, но при малейших отклонениях в работе оборудования качество этих вод обязательно ухудшается.

2. Ошибочно считалось, что можно построить всемогущие очистные сооружения, которые обеспечат должное качество сбрасываемых вод или возврат их в цикл. Поэтому часть производственных стоков сбрасывалось в канализацию. Это были нейтрализованные воды кислотных очисток оборудования и сбросы после гидроуборки помещений и оборудования основных производственных цехов. Другая часть, замасленные стоки из разных схем, направлялась в общестанционную нефтеловушку для очистки от примесей мазута и масла. Туда направляли отмывочные воды фильтров очистки замасленного конденсата, возможные протечки мазута, масла от технологического оборудования, пропарку перед ремонтом мазутопроводов, маслопроводов, воды обмывки наружных поверхностей нагрева перед ремонтами.

При этом потоки с разными концентрациями нефтепродуктов (1-50)% вначале смешивались с получением смеси концентрацией до 5%, затем технология очистки снова требовала концентрирования, чтобы эффективнее отделить мазут и масло.

После очистных сооружений разного назначения сбросы смешиваются с «условно чистыми» - и на сбросе в водоем получается (в среднем по больнице) не страшно. Но когда знаешь, что все полученные за год станцией реагенты (соль, щелочь, кислота, известь и т.д.) в конечном счете, в растворенном виде сброшены в водоемы, становится понятно, как мы обманываем самих себя.

В 80-х годах пришло осознание абсурдности таких решений, и появились сложности согласования с инспектирующими органами по охране природы.

Проектные организации совместно с дирекциями строящихся ТЭЦ были вынуждены разрабатывать нетрадиционные решения по сокращению влияния сбросов от ТЭЦ и котельных.

При таком содружестве на многих проектируемых и строящихся объектах в то время были выработаны решения, которые укладываются в следующие концепции :

Каждый сброс должен очищаться и возвращаться в ту же схему и с тем же качеством, из которой он образовался;

Восстановление качества стоков или их исключение должно осуществляться с помощью термических технологий;

Надо применять технологии, исключающие возможность смешения или перетока разных сред, если появляется брешь в разделяющих поверхностях;

Стоки каждой функциональной схемы должны очищаться и возвращаться в цикл персоналом, обслуживающим эту схему.

С этими положениями оказалось, что практически все стоки можно исключить. Ниже приводятся основные решения (фактически их значительно больше), которые позволяют обеспечить существенное снижение объемов сточных вод энергетического производства:

1. Испарители для непрерывной и периодической продувки;

2. Сбор химически очищенной или обессоленной воды пробоотборников, протечек сальников;

3. Отпуск пара производственным потребителям через паропреобразователи;

4. Использование для мазутного хозяйства вторичного пара после индивидуальных паропреобразователей, либо установка подогревателей с двойными поверхностями нагрева;

5. Разделение схемы охлаждения конденсаторов и охлаждения механизмов на гидравлически независимые схемы, что позволяет исключить возможность попадания в систему охлаждения конденсаторов любых примесей. То есть в продувке системы будут только естественные соли в концентрированном виде, которые в водоем можно сбрасывать рассеянным выпуском;

6. Переход от химических методов очистки подпиточной воды теплосети на коррекционную обработку подпиточной воды с ингиби-торами (ИОМС, ОДФ и др.). Для этого иногда требуется устройство второго контура циркуляции для водогрейных котлов;

7. Реконструкция или замена атмосферных деаэраторов подпиточной воды на деаэраторы двойного действия (ДНД);

8. Замена сальниковых уплотнений на торцевые;

9. Установка разделительных перегородок между подшипниками и сальниками;

10. Замкнутая схема кислотной про-мывки с нейтрализацией, отстоем и сохранением до очередных промывок. Альтернативной заменой является парокислородная очистка котлов и гидромеханическая промывка конденсаторов и подогревателей;

11. Разделение контуров пробоотборных точек;

12. Сбор ливневых и паводковых вод для последующего использования;

13. Устройство оборотных схем гидроуборки;

14. Сжигание концентрированных мазутных и масляных стоков в топках котлов;

15. Организация сухого складирования золы.

Организация работы и ответственность по очистке и возврату стоков в соответствующие схемы персоналом, оперативно управляющим этими схемами, побуждает персонал исключать необоснованное количество сбросов. Тем самым количество стоков и конечное качество теплоносителя контролируется одним персоналом.

Самым сложным оказался вопрос психологической перестройки персонала основных цехов. Часто можно слышать, что не его дело заниматься очисткой сбросов от турбин и котлов. Парадокс: испарители, деаэраторы, БОУ эксплуатируют одни, а за качество воды отвечают другие. В то же время результаты плохого качества воды (свищи, отложения, пережоги) «разгребают» те же технологи.

Неся ответственность за конечное качество теплоносителя в той или иной схеме, регенерация стоков переходит в разряд основных обязанностей. Тем более это осуществляется термическим способом, что ближе персоналу основных цехов, чем ХВО (химическая водоочистка). Если осознать и принять это, то все остальное - дело техники.

Стоки при подготовке воды на их восполнение в ХВО

При выполнении мероприятий по возврату сбросов во всех функциональных схемах и в каждом цехе, необходимости в постоянно действующей общей ХВО для восполнения потерь теоретически нет. Для непредвиденных ситуаций могут предусматриваться «фильтры обратного осмоса» ограниченной производительности. Соответственно сбросы этой категории должны утилизироваться термическим способом.

В случае деаэрации подпиточной воды для открытого горячего водоразбора в ДНД даже для аварийного случая химическая водоочистка не потребуется. С одной тысячи тонн в час деаэрируемой воды в ДНД получается 50 тонн в час обессоленной.

Ливневые и паводковые воды

Появление этих вод носит периодический характер. Поэтому вопрос утилизации заключается в сборе и отстое этих вод. Затем они используются для поливов, обеспыливания топливоподач, подпитки оборотных схем охлаждения и в качестве исходной воды для подготовки восполнения утечек функциональных схем.

Производственно-хозяйственные стоки

Согласованные сбросы производственных стоков на хозфекальные очистные сооружения от минерализации не очищают, зато увеличивают диаметры систем канализации и производительность очистных сооружений. Минерализованные воды просто разбавляются и сбрасываются в водоемы. В целом экономически такой способ утилизации стоков менее выгоден, чем возврат их в цикл через локальную очистку.

Все сказанное выше на первый взгляд многим может показаться декларативным и неосуществимым. Но можно сравнить, как это мы привыкли делать, с зарубежными аналогами: там такой подход используется уже давно.

Автор этих строк непосредственно участвовал в разработке таких решений, многие из них осуществил на практике и готов подтвердить их реализацию примерами. Не будет лишним повторить, что решая экологические проблемы таким путем, мы одновременно повышаем надежность, качество и экономичность подготовки воды. В этом каждый может убедиться самостоятельно. При сравнении надо исходить из того, что решения всех вопросов должны быть комплексными.

Для реализации бессточных (малосточных) схем требуется только экологическая перезагрузка сознания обслуживающего персонала и проектировщиков.

Владимир Шлапаков , экс-директор невского филиала ОАО «ВНИПИэнергопром»

фото Олега Никитина

ДДН-1000/40 (Набережночелнинская ТЭЦ)

Евгений Спицын, Коммерческий директор ООО «ЭКОТЕХ»:

Считаю некорректной формулировку пункта 7 как «Реконструкция или замена атмосферных деаэраторов подпиточной воды на деаэраторы двойного действия (ДНД)». Дело в том, что в настоящее время разработана и защищена патентами РФ только одна технология двойного назначения, которая подразумевает деаэрирование большого объема (550-1000 т/ч) подпиточной воды теплосети и одновременную выработку обессоленной воды пригодной для питания котлов высокого давления в количестве до 30-60 т/ч в рамках одного аппарата. Данная технология и конструкция аппарата разработана Петиным Владимиром Сергеевичем и защищена патентами РФ. На основании лицензионного соглашения, на эксклюзивных правах принадлежит компании «ЭКОТЕХ» и называется Деаэратор Двойного Назначения (ДДН ЭКОТЕХ). Кроме того, деаэраторы двойного назначения ДДН ЭКОТЕХ внедрены на Набережночелнинской ТЭЦ компанией ЭКОТЕХ всего в двух экземплярах (опытный ДДН-800/30 и промышленный ДДН-1000/40).