Вычислить площадь треугольника по трем сторонам. Как найти площадь треугольника

Треугольник - самая простая геометрическая фигура, которая состоит из трех сторон и трех вершин. Благодаря своей простоте треугольник с античных времен используется для проведения различных измерений, а сегодня фигура может пригодиться для решения практических и бытовых задач.

Особенности треугольника

Фигура издревле используется для вычислений, к примеру, землемеры и астрономы оперируют свойствами треугольников для вычисления площадей и расстояний. Через площадь этой фигуры легко выразить площадь любого n-угольника, и это свойство было использовано античными учеными для выведения формул площадей многоугольников. Постоянная работа с треугольниками, в особенности с прямоугольным треугольником, стала основной для целого раздела математики - тригонометрии.

Геометрия треугольника

Свойства геометрической фигуры изучались с древних времен: самая ранняя информация о треугольнике была найдена в египетских папирусах 4000-летней давности. Затем фигуру изучали в Древней Греции и наибольший вклад в геометрию треугольника внесли Евклид, Пифагор и Герон. Изучение треугольника никогда не прекращалось, и в 18-м веке Леонард Эйлер ввел понятие ортоцентра фигуры и окружности Эйлера. На рубеже 19 и 20 веков, когда казалось, что о треугольнике известно абсолютно все, Фрэнк Морли сформулировал теорему о трисектрисах угла, а Вацлав Серпинский предложил треугольник-фрактал.

Существует несколько видов плоских треугольников, знакомых нам со школьного курса геометрии:

  • остроугольный - все углы фигуры острые;
  • тупоугольный - у фигуры есть один тупой угол (больше 90 градусов);
  • прямоугольный - фигура содержит один прямой угол, равный 90 градусов;
  • равнобедренный - треугольник с двумя равными сторонами;
  • равносторонний - треугольник со всеми равными сторонами.
  • В реальной жизни встречаются все виды треугольников, и в некоторых случаях нам может потребоваться вычислить площадь геометрической фигуры.

Площадь треугольника

Площадь - это оценка того, какую часть плоскости ограничивает фигура. Площадь треугольника можно найти шестью способами, оперируя сторонами, высотой, величинами углов, радиусом вписанной или описанной окружности, а также используя формулу Герона или вычисляя двойной интеграл по линиям, ограничивающим плоскость. Самая простая формула для вычисления площади треугольника выглядит как:

где a - сторона треугольника, h - его высота.

Однако на практике нам не всегда удобно находить высоту геометрической фигуры. Алгоритм нашего калькулятора позволяет вычислять площадь, зная:

  • три стороны;
  • две стороны и угол между ними;
  • одну сторону и два угла.

Для определения площади через три стороны мы используем формулу Герона:

S = sqrt (p × (p-a) × (p-b) × (p-c)),

где p - полупериметр треугольника.

Вычисление площади по двум сторонам и углу производятся по классической формуле:

S = a × b × sin(alfa),

где alfa - угол между сторонами a и b.

Для определения площади через одну сторону и два угла мы используем соотношение, что:

a / sin(alfa) = b / sin(beta) = c / sin(gamma)

Используя простую пропорцию, мы определяем длину второй стороны, после чего рассчитываем площадь по формуле S = a × b × sin(alfa). Данный алгоритм полностью автоматизирован и вам необходимо только внести заданные переменные и получить результат. Рассмотрим пару примеров.

Примеры из жизни

Тротуарная плитка

Допустим, вы хотите замостить пол треугольной плиткой, и чтобы определить количество необходимого материала, вам следует узнать площадь одной плитки и площадь пола. Пусть нужно обработать 6 квадратных метров поверхности, используя плитку, размеры которой составляют a = 20 см, b = 21 см, c = 29 см. Очевидно, что для вычисления площади треугольника калькулятор использует формулу Герона и выдаст результат:

Таким образом, площадь одного элемента плитки составит 0,021 квадратный метр, и вам понадобится 6/0,021 = 285 треугольников для благоустройства пола. Числа 20, 21 и 29 составляют пифагорову тройку - числа, которые удовлетворяют . И верно, наш калькулятор также рассчитал все углы треугольника, и угол гамма составляет именно 90 градусов.

Школьная задача

В школьной задаче необходимо отыскать площадь треугольника, зная, что сторона a = 5 см, а углы альфа и бета раны 30 и 50 градусов соответственно. Для решения этой задачи вручную мы вначале нашли бы значение стороны b, используя пропорцию соотношения сторон и синусов противолежащих углов, после чего определили площадь с использованием простой формулы S = a × b × sin(alfa). Давайте сэкономим время, введем данные в форму калькулятора и получим мгновенный ответ

При использовании калькулятора важно корректно указать углы и стороны, иначе результат будет неверным.

Заключение

Треугольник - уникальная фигура, которая встречается как в реальной жизни, так и в абстрактных расчетах. Используйте наш онлайн-калькулятор для определения площади треугольников любых видов.

Из противоположной вершины) и разделите полученное произведение на два. В виде данное выглядит следующим образом:

S = ½ * а * h,

где:
S – площадь треугольника,
а – длина его стороны,
h – высота, опущенной на эту сторону.

Длина стороны и высота должны быть представлены в одинаковых единицах измерения. При этом площадь треугольника получится в соответствующих « » единицах.

Пример.
На одну из сторон разностороннего треугольника длиной 20 см, опущен перпендикуляр из противоположной вершины длиной 10 см.
Требуется площадь треугольника.
Решение.
S = ½ * 20 * 10 = 100 (см²).

Если известны длины двух любых сторон разностороннего треугольника и угол между ними, то воспользуйтесь формулой:

S = ½ * а * b * sinγ,

где: а, b – длины двух произвольных сторон, а γ – угла между ними.

На практике, например, при измерении земельных участков, использование вышеприведенных формул иногда затруднительно, так как требует дополнительных построений и измерения углов.

Если вам известны длины всех трех сторон разностороннего треугольника, то воспользуйтесь формулой Герона:

S = √(p(p-a)(p-b)(p-c)),

a, b, c – длины сторон треугольника,
р – полупериметр: p = (a+b+c)/2.

Если кроме длин всех сторон известен радиус вписанной в треугольник окружности, то воспользуйтесь следующей компактной формулой:

где: r – радиус вписанной окружности (р – полупериметр).

Для вычисления площади разностороннего треугольника описанной окружности и длины его сторон, используйте формулу:

где: R – радиус описанной окружности.

Если известна длина одной из сторон треугольника и трех углов (в принципе, достаточно двух – величина третьего вычисляется из равенства суммы трех углов треугольника - 180º), то воспользуйтесь формулой:

S = (a² * sinβ * sinγ)/2sinα,

где α – величина противолежащего стороне а угла;
β, γ – величины остальных двух углов треугольника.

Потребность в нахождении различных элементов, в том числе и площади треугольника , появилась за много веков до нашей эры у ученых астрономов Древней Греции. Площадь треугольника можно вычислить различными способами, используя разные формулы. Способ вычисления зависит от того, какие элементы треугольника известны.

Инструкция

Если из условия нам известны значения двух сторон b, c и угол ими образованный?, то площадь треугольника ABC находится по формуле:
S = (bcsin?)/2.

Если из условия нам известны значения двух сторон a, b и не образованный ими угол?, то площадь треугольника ABC находится следующим образом:
Находим угол?, sin? = bsin?/a, далее по таблице определяем сам угол.
Находим угол?, ? = 180°-?-?.
Находим саму площадь S = (absin?)/2.

Если из условия нам известны значения только трех сторон треугольника a, b и c, то площадь треугольника ABC находится по формуле:
S = v(p(p-a)(p-b)(p-c)) , где p – полупериметр p = (a+b+c)/2

Если из условия задачи нам известны высота треугольника h и сторона к которой опущена эта высота, то площадь треугольника ABC по формуле:
S = ah(a)/2 = bh(b)/2 = ch(c)/2.

Если нам известны значения сторон треугольника a, b, c и радиус описанной около данного треугольника R, то площадь этого треугольника ABC определяется по формуле:
S = abc/4R.
Если известны три стороны a, b, c и радиус вписанной в , то площадь треугольника ABC находится по формуле:
S = pr, где p – полупериметр, p = (a+b+c)/2.

Если ABC – равносторонний, то площадь находится по формуле:
S = (a^2v3)/4.
Если треугольник ABC – равнобедренный, то площадь определяется по формуле:
S = (cv(4a^2-c^2))/4, где с – треугольника .
Если треугольник ABC – прямоугольный, то площадь определяется по формуле:
S = ab/2, где a и b – катеты треугольника .
Если треугольник ABC – прямоугольный равнобедренный, то площадь определяется по формуле:
S = c^2/4 = a^2/2, где с – гипотенуза треугольника , a=b – катет.

Видео по теме

Источники:

  • как измерить площадь треугольника

Совет 3: Как найти площадь треугольника, если известен угол

Знания лишь одного параметра (величины угла) не достаточно для нахождения площади треугольника . Если же есть какие-либо дополнительные размеры, то для определения площади можно выбрать одну из формул, в которых в качестве одной из известных переменных используется и величина угла. Несколько таких формул, применяемых наиболее часто, приведено ниже.

Инструкция

Если кроме величины угла (γ), образованного двумя сторонами треугольника , известны и длины этих сторон (A и B), то площадь (S) фигуры можно определить, как половину от произведения длин сторон на синус этого известного угла: S=½×A×B×sin(γ).

Понятие площади

Понятие площади любой геометрической фигуры, в частности треугольника, будем связывать с такой фигурой, как квадрат. За единицу площади любой геометрической фигуры будем принимать площадь квадрата, сторона которого равняется единице. Для полноты, вспомним два основных свойства для понятия площадей геометрических фигур.

Свойство 1: Если геометрические фигуры равны, то значения их площадей также равны.

Свойство 2: Любая фигура может быть разбита на несколько фигур. Причем площадь первоначальной фигуры равняется сумме значений площадей всех составляющих её фигур.

Рассмотрим пример.

Пример 1

Очевидно, что одна из сторон треугольника является диагональю прямоугольника , у которого одна сторона имеет длину $5$ (так как $5$ клеток), а вторая $6$ (так как $6$ клеток). Следовательно, площадь этого треугольника будет равняться половине такого прямоугольника. Площадь прямоугольника равняется

Тогда площадь треугольника равняется

Ответ: $15$.

Далее рассмотрим несколько методов для нахождения площадей треугольников, а именно с помощью высоты и основания, с помощью формулы Герона и площадь равностороннего треугольника.

Как найти площадь треугольника через высоту и основание

Теорема 1

Площадь треугольника можно найти как половину произведения длины стороны, на высоту, проведенную к этой стороне.

Математически это выглядит следующим образом

$S=\frac{1}{2}αh$

где $a$ - длина стороны, $h$ - высота, проведенная к ней.

Доказательство.

Рассмотрим треугольник $ABC$, в котором $AC=α$. К этой стороне проведена высота $BH$, которая равняется $h$. Достроим его до квадрата $AXYC$ как на рисунке 2.

Площадь прямоугольника $AXBH$ равняется $h\cdot AH$, а прямоугольника $HBYC$ равняется $h\cdot HC$. Тогда

$S_ABH=\frac{1}{2}h\cdot AH$, $S_CBH=\frac{1}{2}h\cdot HC$

Следовательно, искомая площадь треугольника, по свойству 2, равняется

$S=S_ABH+S_CBH=\frac{1}{2}h\cdot AH+\frac{1}{2}h\cdot HC=\frac{1}{2}h\cdot (AH+HC)=\frac{1}{2}αh$

Теорема доказана.

Пример 2

Найти площадь треугольника на рисунке ниже, если клетка имеет площадь, равную единице

Основание этого треугольника равняется $9$ (так как $9$ составляет $9$ клеток). Высота также равняется $9$. Тогда, по теореме 1, получим

$S=\frac{1}{2}\cdot 9\cdot 9=40,5$

Ответ: $40,5$.

Формула Герона

Теорема 2

Если нам даны три стороны треугольника $α$, $β$ и $γ$, то его площадь можно найти следующим образом

$S=\sqrt{ρ(ρ-α)(ρ-β)(ρ-γ)}$

здесь $ρ$ означает полупериметр этого треугольника.

Доказательство.

Рассмотрим следующий рисунок:

По теореме Пифагора из треугольника $ABH$ получим

Из треугольника $CBH$, по теореме Пифагора, имеем

$h^2=α^2-(β-x)^2$

$h^2=α^2-β^2+2βx-x^2$

Из этих двух соотношений получаем равенство

$γ^2-x^2=α^2-β^2+2βx-x^2$

$x=\frac{γ^2-α^2+β^2}{2β}$

$h^2=γ^2-(\frac{γ^2-α^2+β^2}{2β})^2$

$h^2=\frac{(α^2-(γ-β)^2)((γ+β)^2-α^2)}{4β^2}$

$h^2=\frac{(α-γ+β)(α+γ-β)(γ+β-α)(γ+β+α)}{4β^2}$

Так как $ρ=\frac{α+β+γ}{2}$, то $α+β+γ=2ρ$, значит

$h^2=\frac{2ρ(2ρ-2γ)(2ρ-2β)(2ρ-2α)}{4β^2}$

$h^2=\frac{4ρ(ρ-α)(ρ-β)(ρ-γ)}{β^2 }$

$h=\sqrt{\frac{4ρ(ρ-α)(ρ-β)(ρ-γ)}{β^2}}$

$h=\frac{2}{β}\sqrt{ρ(ρ-α)(ρ-β)(ρ-γ)}$

По теореме 1, получим

$S=\frac{1}{2} βh=\frac{β}{2}\cdot \frac{2}{β} \sqrt{ρ(ρ-α)(ρ-β)(ρ-γ)}=\sqrt{ρ(ρ-α)(ρ-β)(ρ-γ)}$

Чтобы определить площадь треугольника, можно пользоваться разными формулами. Из всех способов самый легкий и часто применяемый - это умножение высоты на длину основания с последующим делением полученного результата на два. Однако данный метод далеко не единственный. Ниже вы сможете прочесть, как найти площадь треугольника, используя разные формулы.

Отдельно мы рассмотрим способы вычисления площади специфических видов треугольника - прямоугольного, равнобедренного и равностороннего. Каждую формулу мы сопровождаем коротким пояснением, которое поможет вам понять ее суть.

Универсальные способы нахождения площади треугольника

В приведенных ниже формулах используются специальные обозначения. Мы расшифруем каждое из них:

  • a, b, c – длины трех сторон рассматриваемой нами фигуры;
  • r – радиус окружности, которая может быть вписана в наш треугольник;
  • R – радиус той окружности, которая может быть описана вокруг него;
  • α - величина угла, образованного сторонами b и с;
  • β - величина угла между a и c;
  • γ - величина угла, образованного сторонами а и b;
  • h – высота нашего треугольника, опущенная из угла α на сторону а;
  • p – половина суммы сторон a, b и с.

Логически понятно, почему можно находить площадь треугольника этим способом. Треугольник легко достраивается до параллелограмма, в котором одна сторона треугольника будет выполнять роль диагонали. Площадь параллелограмма находится умножением длины одной из его сторон на значение высоты, проведенной к ней. Диагональ разделяет этот условный параллелограмм на 2 одинаковых треугольника. Следовательно, совершенно очевидно, что площадь нашего исходного треугольника должна равняться половине площади этого вспомогательного параллелограмма.

S=½ a · b·sin γ

Согласно этой формуле, площадь треугольника находится умножением длин двух его сторон, то есть а и b, на синус образованного ими угла. Эта формула логически выводится из предыдущей. Если опустить высоту из угла β на сторону b, то, согласно свойствам прямоугольного треугольника, при умножении длины стороны a на синус угла γ получаем высоту треугольника, то есть h.

Площадь рассматриваемой фигуры находим путем умножения половины радиуса окружности, которую в него можно вписать, на его периметр. Иными словами, находим произведение полупериметра на радиус упомянутой окружности.

S= a · b · с/4R

Согласно данной формуле, необходимую нам величину можно найти путем деления произведения сторон фигуры на 4 радиуса окружности, вокруг нее описанной.

Эти формулы универсальны, так как дают возможность определить площадь любого треугольника (разностороннего, равнобедренного, равностороннего, прямоугольного). Можно это сделать и при помощи более сложных вычислений, на которых мы подробно останавливаться не станем.

Площади треугольников со специфическими свойствами

Как найти площадь прямоугольного треугольника? Особенностью этой фигуры является то, что две ее стороны одновременно являются ее высотами. Если а и b являются катетами, а с становится гипотенузой, то площадь находим так:

Как найти площадь равнобедренного треугольника? В нем две стороны с длиной а и одна сторона с длиной b. Следовательно, его площадь определить можно путем деления на 2 произведения квадрата стороны а на синус угла γ.

Как найти площадь равностороннего треугольника? В нем длина всех сторон равняется а, а величина всех углов - α. Его высота равна половине произведения длины стороны а на корень квадратный из 3. Чтобы найти площадь правильного треугольника, нужно квадрат стороны а умножить на корень квадратный из 3 и разделить на 4.