Оценка влияния нестабильного температурного режима на коррозионное состояние газопроводов большого диаметра аскаров герман робертович. Наблюдения за коррозионным состоянием трубопроводов

Коррозионное состояние трубопроводов является одним из основных факторов, характеризующих работоспособность ЛЧ МГ, надежность и безопасность ее эксплуатации. Защита трубопроводов определяется состоянием изоляционного покрытия и систем ЭХЗ.

Для установок электрохимзащиты (ЭХЗ) контроль технического состояния отдельных осуществляют путем периодических осмотров. При этом производят проверку показаний электроизмерительных приборов контрольными приборами, измерение потенциалов в точках дренажа, измерение электрического сопротивления цепи постоянного тока, оценку непрерывности работы установки катодной защиты по специальному счетчику или счетчику электрической энергии, контроль контактных соединений, анодных заземлений, узлов и блоков установок.

Осмотры производят не реже: 4-х раз в месяц для установок дренажной защиты, 2-х раз в месяц - для установок катодной защиты.

Постоянный контроль по работе установок катодной защиты обеспечивается телеметрическими устройствами. Это позволяет снизить затраты и время на объезды установок, сократить время перерывов в их работе от момента обнаружения отказа до замены или ремонта установки, повышает точность настройки и стабильность параметров средств ЭХЗ.

При проверке состояния электрохимзащиты участка МГ определяют:

Уровень катодной защиты трубопровода;

Величину поляризационных потенциалов методом отключения источника поляризации (СКЗ) или экстраполяционными методами с использованием этих же измерительных систем;

Токи поляризации, протекающие по трубопроводу, по методике, рекомендуемой ГОСТ;

Величину удельного электрического сопротивления грунта;

Состав проб межслойного электролита, содержащегося в местах вздутий, мешков и других дефектах изоляционного покрытия.

Контроль защищенности трубопроводов заключается в периодических измерениях потенциалов "сооружение-земля" на всем протяжении трубопровода и сравнении полученных значений с нормативным значением, а также в определении суммарного времени, в течение которого трубопровод на всем протяжении имеет защитное значение потенциалов.

Измерение потенциалов на всем протяжении трубопровода производят выносным электродом сравнения с шагом измерения 10-20 м не реже одного раза в пять лет. При этом первое измерение должно быть произведено по истечении не менее 10 месяцев после засыпки трубопровода.

Измерения потенциалов в контрольно-измерительных колонках (КИК) и выносным электродом в точках на трассе, имеющих минимальные значения потенциала, производят не менее двух раз в год. Дополнительно измерения выполняются при работах, связанных с развитием систем ЭХЗ, изменениями в режиме работы установок катодной защиты, при работах связанных с ликвидацией источников блуждающих токов.



По результатам измерений потенциалов должны быть построены графики и определена защищенность по протяженности, а на основании данных телеконтроля по работе установок катодной защиты или их технических осмотров - защищенность трубопроводов во времени.

Контроль технического состояния изоляционных покрытий в процессе строительства осуществляется на участках законченного строительства. Контроль сплошности выполняется способом катодной поляризации. Данные о результатах заносятся в исполнительную документацию.

Контроль изоляционных покрытий при эксплуатации проводят в процессе комплексного обследования МГ. Сопоставление данных полученных при обследовании МГ с данными исполнительной документации позволяет оценить изменение защитных свойств покрытий во времени и по протяженности.

Определение состояния покрытия на обследуемом участке оценивается в два этапа как прямым, так и косвенным методами.

Косвенно на основании анализа данных по изменению защитной плотности тока по протяженности и во времени, результатов измерений потенциала "трубопровод-земля" и коррозионного электрометрического обследования;

Прямым методом при выборочном шурфовании.

Косвенные методы определения состояния изоляции и системы ЭХЗ предполагают интегральные и локальные измерения.

Интегральными методами определяют характеристики обследуемого участка газопровода в целом. Эти методы позволяют оценивать состояние покрытия на всей длине участка и определять места отслоений и сквозных повреждений изоляции. При этом выявляются отдельные специфические зоны, в которых нужно применить локальные методы контроля покрытий и средств ЭХЗ.



Основными критериями определения периодичности контроля изоляции без вскрытия траншеи являются защитная плотность тока на трубопроводе и переходное сопротивление "трубопровод-земля", позволяющие интегрально оценить качество изоляционного покрытия. На основе этих данных с помощью искателей производят поиск мест повреждений изоляционного покрытия и осуществляют выборочное шурфование.

Прямой метод или выборочное шурфование предполагает вскрытие газопровода, очистку его поверхности от грунта, визуальное обследование изоляционного покрытия и измерение переходного сопротивления, например, методом "полотенца". При этом следует проводить измерения сплошности, адгезии, толщины и переходного электросопротивления покрытия. Отбор проб изоляции и лабораторные испытания покрытий выполняют через каждые 3 года эксплуатации. Одновременно производится отбор проб грунта и грунтового электролита для контроля системы ЭХЗ.

После обследования производится вскрытие изоляции, прежде всего на участках с механическими повреждениями и другими дефектами. При обнаружении на освобожденных местах коррозионных и других повреждений зона осмотра расширяется для определения границ поврежденного участка трубы. В обязательный осмотр входит участок кольцевого сварного стыка.

Контроль состояния изоляционных покрытий выборочным шурфованием производят через 3 года с начала эксплуатации покрытий, а при достижении критических значений ЭХЗ и снижения локального переходного сопротивления до 10 ом·м - один раз в год.

Как интегральные, так и локальные методы являются электрометрическими. Они используют приборы постоянного и переменного тока и подразделяются на контактные и бесконтактные.

Оценку коррозионного состояния осуществляют путем осмотра и инструментальных измерений в контрольных шурфах. Определения выполняют в первую очередь:

На участках с неудовлетворительным состоянием защитных покрытий;

На участках, не обеспеченных непрерывной катодной поляризацией защитной величины;

На коррозионно-опасных участках трассы, к которым относятся горячие участки с температурой транспортируемой продукции выше 40° С, участки трубопроводов, эксплуатирующиеся южнее 50-й параллели северной широты, в засоленных почвах (солончаках, солонцах, солодях, такырах, сорах и др.), на поливных почвах;

На участках блуждающих токов;

На участках выхода трубопроводов из грунта;

На пересечениях трубопроводов;

На склоновых участках оврагов, балок и рек;

На участках промышленных и бытовых стоков;

На участках с периодическим обводнением грунта.

При визуальном осмотре и индивидуальном измерении коррозионного состояния трубопровода в шурфе определяют:

Наличие и характер продуктов коррозии;

Максимальную глубину каверн;

Площадь поверхности, поврежденной коррозией.

Диагностика - это часто встречающееся слово в современном мире. Оно так крепко вжилось в наш ежедневный словарный круговорот, что мы и не обращаем на него никакого особого внимания. Сломалась стиральная машина - диагностика, обслуживание в сервисе любимого авто - диагностика, поход к врачу - диагностика. Эрудированный человек скажет: диагностика с греческого - «способность распознавать». Так что же нам, собственно, необходимо распознать в техническом состоянии металлического объекта, подвергающегося коррозии и в системах электрохимической (в основном катодной) защиты при их наличии на объекте? Об этом мы кратко и расскажем в данном обзоре.

В первую очередь договоримся о терминах. Когда употребляется термин коррозионная диагностика (обследование) в 90 % случаев идет речь о наружной поверхности рассматриваемого объекта. Диагностика выполняется, например, на наружной поверхности подземных трубопроводов, резервуаров, других металлоконструкций, подверженных почвенной коррозии или коррозии блуждающими токами, наружной поверхности причальных сооружений, корродирующих под влиянием соленой и пресной воды и т.д. Если мы говорим об анализе коррозионных процессов на внутренней поверхности тех же трубопроводов или резервуаров, то вместо терминов «диагностика» или «обследование» обычно применяется термин «мониторинг». Разные термины подразумевают разные принципы обеспечения коррозионной безопасности - исследование коррозионного состояния наружной поверхности обычно проводится дискретно, 1 раз в 3-5 лет, а мониторинг коррозионных процессов внутри исследуемого объекта осуществляется или непрерывно, или с небольшим интервалом (1 раз в месяц).

Так с чего же начать при диагностике коррозионного состояния рассматриваемого объекта? С оценки потенциальной опасности и текущего положения вещей. Если объект, например, подводный, то на первом этапе потенциально возможно провести визуальный контроль наличия коррозионных дефектов и следов коррозии, и при их наличии оценить текущую и прогнозируемую опасность. В местах, где визуальный контроль невозможен, оценка потенциальной опасности проводится по косвенным признакам. Рассмотрим ниже основные диагностируемые параметры потенциальной коррозионной опасности и их влияние на процесс коррозионного разрушения:


Помимо указанных выше основных факторов, при проведении диагностики коррозионного состояния, в зависимости от характеристик объекта, изучают большое количество дополнительных параметров, таких как: водородный показатель (pH) грунта или воды (особенно при потенциальной опасности коррозионного растрескивания под напряжением), наличие коррозионно-опасных микроорганизмов, содержание солей в грунте или воде, возможность аэрации и увлажнения объекта и т.д. Все эти факторы могут при определенных условиях резко увеличивать скорость коррозионного разрушения объекта обследования.

После изучения параметров потенциальной коррозионной опасности часто проводят прямые измерения глубины коррозионных повреждений на объекте. Для этих целей используется весь спектр методов неразрушающего контроля - визуальный и измерительный контроль, ультразвуковые методы, магнитометрический контроль и т.д. Места контроля выбираются исходя из их потенциальной опасности по результатам выполненной оценки на первом этапе. Для подземных объектов для обеспечения доступа непосредственно к объекту выполняют шурфование.

На финальном этапе могут быть выполнены лабораторные исследования, например оценка скорости коррозии в лабораторных условиях или металлографические исследования состава и структуры металла в местах коррозионных дефектов.

Если диагностика выполняется на объекте, который уже оснащен системами противокоррозионной электрохимической защиты, то помимо исследования коррозионного состояния самого объекта выполняется диагностика исправности и качества работы существующей системы ЭХЗ, т.е. ее работоспособность в целом и значения выходных и контролируемых параметров в частности. Опишем наиболее важные параметры системы ЭХЗ, которые необходимо контролировать при проведении комплексного обследования систем ЭХЗ.

  1. Катодный потенциал . Главный параметр работоспособности систем катодной и протекторной защиты. Определяет степень защищённости объекта от коррозии средствами ЭХЗ. Нормативные значения задаются основополагающими нормативными документами по противокоррозионной защите: ГОСТ 9.602-2005 и ГОСТ Р 51164-98. Измеряется как на стационарных пунктах (КИП и КДП), так и по трассе методом выносного электрода.
  2. Состояние средств ЭХЗ: станций катодной, протекторной и дренажной защиты, анодных заземлений, КИП, изолирующих фланцев, кабельных линий и т.д. Все характеристики обследуемого оборудования должны быть в рамках значений, заданных в проекте. Дополнительно следует выполнить прогноз работоспособности оборудования на период до следующего обследования. Например, станции катодной защиты должны иметь запас по току для возможности регулирования защитного потенциала объекта при неминуемом старении изоляционного покрытия. Если запаса по току нет, следует запланировать замену станции катодной защиты на более мощную и/или ремонт анодного заземления.
  3. Влияние системы ЭХЗ на сторонние объекты . В случае ошибок проектирования систем ЭХЗ возможно их вредное влияние на сторонние металлические сооружения. Особенно часто это бывает на трубопроводах месторождений нефти и газа, промышленных площадках, объектах внутри плотной городской застройки. Механизм такого влияния подробно описан . Оценка такого влияния обязательно должна проводиться в рамках диагностики систем ЭХЗ.

По результатам обследования должен быть подготовлен технический отчет, который должен содержать все числовые данные произведенных замеров, графики защитных потенциалов и так называемые трассовки, описание выявленных недостатков и дефектов, подробные фотоматериалы и т.д. Также в отчете должен быть сделан вывод по коррозионной опасности объекта с локализацией мест повышенного риска и разработаны технические решения по противокоррозионной защите.

Итак, по выполнении всех этапов диагностики заказчик получает отчет, в котором содержится подробная информация по коррозионному состоянию объекта и состоянию системы ЭХЗ. Но добытая диагностическими бригадами (порой с большим трудом, учитывая особенности местности и климата) информация просто пропадет, станет неактуальной, если в течение определенного времени ее не отработать, т.е. своевременно не устранить дефекты, которые были выявлены в ходе обследования, или не оборудовать объект обследования дополнительными средствами противокоррозионной защиты. Коррозионная ситуация на объекте постоянно меняется и если сразу не отработать полученную диагностическую информацию она может сильно устареть. Поэтому если владелец заботится о коррозионной безопасности своих объектов, то их система противокоррозионной защиты регулярно модернизируется по результатам так же регулярно выполняемых диагностических обследований, и риск коррозионного отказа на таких объектах минимален.

Тэги: блуждающие токи, диагностика коррозии, диагностика коррозионного состояния, изоляционное покрытие, индукционное влияние, источники переменного тока, коррозионная опасность, коррозионно-опасные микроорганизмы, коррозионное обследование, коррозионное растрескивание под напряжением, коррозионное состояние, сопротивление электролита, состояние изоляционного покрытия, электрохимическая защита, электрохимический потенциал, ЭХЗ

Федотов С.Д., Улыбин А.В., Шабров Н.Н.

инженер С. Д. Федотов;
к. т. н., доцент А. В. Улыбин *;
д. ф.- м. н., профессор Н. Н. Шабров,
ФГБОУ ВПО Санкт - Петербургский государственный политехнический университет

Ключевые слова: коррозионный износ; стальные конструкции; ультразвуковая толщинометрия; обследование строительных конструкций

Хорошо известно, что коррозионные потери металлических конструкций приносят большой экономический ущерб. Коррозионное разрушение элементов стальных конструкций и арматуры в железобетоне является одним из основных факторов, приводящих к недопустимому и аварийному состоянию конструкций . Скорость коррозии изменяется в широких пределах от 0,05 до 1,6 мм в год и зависит от коррозионной стойкости металла, параметров агрессивной среды, наличия и состояния антикоррозионной обработки, конструктивного решения и прочих факторов.

Определение фактического коррозионного износа эксплуатируемых стальных конструкций необходимо как для контроля их технического состояния и своевременного восстановления, так и для предотвращения аварий (отказов и обрушений).

В современных нормативах по обследованию, технической литературе и научных трудах вопрос правильного определения коррозионного износа раскрыт не полностью. Из имеющихся указаний не всегда четко понятно, чем и как измерять потери, какие участки выбирать и как их подготавливать. Нет однозначного мнения о том, как отображать результат измерений. Таким образом, необходимо обобщить имеющиеся в литературе данные и разработать методику контроля с учетом современного приборного обеспечения.

Контроль коррозионных потерь на практике сводится к двум основным задачам:

1) определение фактического остаточного сечения металлического элемента;

2) сравнение фактической толщины с изначальной (либо измеренной на предыдущем этапе обследования).

Казалось бы, обе указанные задачи весьма легко решаются. Однако на практике возникают проблемы как при измерении толщины поврежденной конструкции, так и при сопоставлении ее с изначальной. Также не всегда очевидно, как наиболее удобно и информативно отобразить результат исследования. Решению данных проблем, схематично представленных на рис.1, посвящена данная статья.

Рисунок 1. Методы определения коррозионных потерь

В статье рассмотрены основные методы контроля, реализуемые при наличии сплошной коррозии металла. Вопросы измерения местной коррозии (язвенной, питтинговой, межкристаллитной и др.) в данном материале не рассматриваются.

Измерение остаточной толщины механическим методом

Прежде чем рассматривать вопрос толщинометрии, необходимо отметить, что обмеры металлических конструкций требуют максимальной точности измерений по сравнению с конструкциями из других материалов. Согласно нормативно - методическим документам и технической литературе точность измерения должна быть не менее 0,05-0,1 мм.

Наиболее простым и требующим минимальных затрат на оборудование способом является определение фактической толщины элементов стальных конструкций с помощью различных механических измерительных приборов. Для реализации указанных целей с обеспечением необходимой точности рекомендуется использовать штангенциркули, микрометры и механические толщиномеры, а также измерительные скобы .

На практике применение наиболее доступных из указанных средств, а именно штангенциркулей, не всегда удобно, а иногда невозможно. Объясняется это тем, что измерение штангенциркулем можно осуществить только на открытых участках профилей (перья уголков, полки двутавров и швеллеров и др.) (рис. 2). Особенно часто возникает необходимость измерения остаточной толщины более тонкого элемента сечения, которым является стенка в швеллерах и двутаврах. В большинстве случаев свободный конец профиля (на участках опирания) недоступен и, соответственно, измерение выполнить невозможно. Вторым существенным ограничением является длина губок штангенциркуля. При этом имеется возможность измерения толщины металла только на участках, расположенных вдоль края исследуемого профиля в пределах полосы, равной длине губок.

Рисунок 2. Измерение остаточной толщины штангенциркулем

Рисунок 3. Измерение остаточной толщины ИЧТ со скобой

Рисунок 4. Микрометр - толщиномер

Более удобными средствами измерения являются толщиномеры со скобой. Применяя их, возможно выполнить измерение толщины на локальных участках, расположенных на отдалении от краев исследуемого элемента. При неравномерном коррозионном повреждении данное преимущество будет решающим в сравнении со штангенциркулем. Помимо этого, при использовании толщиномера с мессурой (рис. 3) может быть увеличена точность измерения по сравнению с механическим штангенциркулем до 0,01 мм и более. С другой стороны, применение механических толщиномеров в виде скоб сопровождается теми же ограничениями, что и у штангенциркулей.

Очевидно, что применение вышеуказанных механических средств измерения невозможно на элементах замкнутого профиля - трубах, которые применяются с каждым годом все в больших объемах. Единственно возможный способ механического измерения толщины замкнутого профиля заключается в сверлении отверстия и измерении специализированным микрометром (рис. 4). При этом точность измерения и производительность контроля резко снижаются.

Измерение остаточной толщины физическим методом

Для определения толщины, сплошности и других параметров изделий и покрытий, выполненных из различных материалов, используется широкий спектр физических методов неразрушающего контроля (НК). Среди них можно отметить магнитные, вихретоковые, радиоволновые методы и др. .

Одним из наиболее успешно применяемых физических методов контроля толщины и других параметров стальных конструкций является ультразвуковой метод. Подтверждением тому стало повсеместное изучение и применение ультразвуковых приборов (толщиномеров и дефектоскопов) в отечественной и зарубежной практике . Данный метод основан на способности ультразвуковых волн отражаться на границе раздела сред . Необходимо отметить, что для целей, описываемых в настоящей работе, ультразвуковой эхо - метод является единственно применимым среди физических методов НК .

Основные преимущества использования современных приборов, реализующих ультразвуковой метод толщинометрии:

Возможность контроля при одностороннем доступе;

Работа на участках, удаленных от края конструкции (без наличия открытых краев);

Высокая производительность;

Достаточная точность измерений;

Относительно простые требования по предварительной подготовке участка измерения.

В России широко применяются ультразвуковые толщиномеры как отечественных, так и зарубежных производителей (ООО «АКС», ООО «Технотест», ЗАО «Константа», « Olympus » и др.). Наиболее удобными для работы в полевых условиях являются приборы - моноблоки (рис. 5).

Рисунок 5. Измерение толщины с помощью ультразвукового прибора

Безусловно, у них есть и недостатки, среди которых ограниченный диапазон измеряемых толщин, меньшая емкость аккумулятора и другие.

Для использования большинства ультразвуковых толщиномеров необходима подготовка поверхности стали путем зачистки или (предпочтительно) шлифовки участка измерения. С одной стороны, данное обстоятельство снижает производительность контроля, а в случае отсутствия источника электроснабжения - весьма существенно. С другой стороны, подготовка участка измерения также необходима для обеспечения нормальной точности контроля механическими толщиномерами. Кроме того, доступность портативных аккумуляторных инструментов для механической обработки поверхности металла в наши дни практически устраняет эту проблему.

Учитывая вышесказанное, можно сделать вывод о том, что преимущество ультразвуковых приборов перед механическими толщиномерами очевидно.

Определение начальной толщины сечения

Чтобы понять, каковы потери металла, необходимо знать его начальную толщину. Самым простым и достоверным способом является измерение толщины исследуемого элемента в неповрежденном сечении. В случае неограниченного (в пространстве) и продолжительного доступа агрессивной среды к открытым элементам зачастую вся площадь элемента имеет коррозионное повреждение. В данном случае определить изначальную толщину элемента прямым измерением невозможно.

В такой ситуации параметры сечения элементов определяют либо по проектной документации, либо по сортаменту металлопроката. Данный подход имеет невысокую достоверность и в ряде случаев невозможен (отсутствие документации, применение нестандартных сварных профилей и пр.). Если же проектная документация доступна для анализа, вероятность определения искомых параметров выше. Однако нет гарантии того, что возведенные конструкции полностью соответствуют проектному решению, а в реалиях отечественного строительства - исполнительной документации.

Выявление толщин элементов по сортаменту путем определения общих габаритов сечения (высоты и ширины) также не всегда возможно. Если конструкции выполнены из швеллеров и двутавров, для решения задачи необходимо наличие сортаментов, соответствующих периоду изготовления профилей. Однако при обследовании конструкций не всегда удается определить соответствие профилей конкретному сортаменту. При обследовании труб и уголков использование сортамента для определения начальной толщины невозможно, так как одним и тем же габаритам сечений соответствует большой диапазон толщин. Например, равнополочный уголок № 50 по ГОСТ 8509-93 может иметь начальную толщину от 3,0 до 8,0 мм с шагом 1,0 мм.

Косвенный метод контроля коррозионных потерь

В нормативах и технической литературе по обследованию зданий можно встретить рекомендации применять для приблизительной оценки величины коррозионных потерь косвенный метод. Суть его заключается в измерении толщины слоя продуктов коррозии и в оценке величины повреждения, равной 1/3 толщины коррозионных окислов.

Достоверность такого подхода с нашей точки зрения весьма сомнительна по следующим причинам. В основу идеи, вероятно, положен тот факт, что продукты коррозии имеют плотность существенно меньшую, чем разрушенный металл. Можно предположить, что для достоверной реализации метода плотность коррозионных окислов должна быть в 3 раза меньше плотности стали. Однако по результатам измерений, выполненных авторами на различных объектах, отношение плотностей продуктов коррозии (без учета объема открытых пор и воздушных прослоек) и стали изменяется в диапазоне 2,1...2,6 раза (табл. 1).

Таблица 1. Плотность коррозионных окислов

Объект отбора

Элемент

Условия эксплуатации

Плотность окислов, т / м 3

Отношение к плотности стали

Балки междуэтажного перекрытия жилого здания

Полка балки

Увлажнение во время протечек

Стенка балки

Канализационная решетка лаборатории

Уголок решетки

Периодическое увлажнение

Отстойник

Подкос лотка

Под уровнем жидкости

канализационных очистных сооружений

Уголок водослива

Постоянное увлажнение

Можно было бы опровергнуть данные утверждения тем, что именно за счет наличия пор и воздушных прослоек толщина продуктов коррозии как раз в три раза больше поврежденного слоя металла. Однако в этом и заключается вторая причина невозможности реализации косвенного подхода. Плотность «упаковки» продуктов коррозии (соотношение воздушных прослоек и пор с объемом окислов) зависит от разных факторов. К ним в разной степени относятся вид агрессивной среды, периодичность доступа среды к материалу, наличие микроорганизмов, являющихся катализатором процесса , и другие. В большей степени играет роль конструктивное решение, а именно наличие прилегающих к корродирующему элементу других конструкций, препятствующих свободному накоплению продуктов коррозии.

Авторам не раз приходилось наблюдать при обследовании однотипных конструктивных элементов различные по своей структуре продукты коррозии. Например, в одном из зданий постройки конца XIX века плотность коррозионных окислов, зафиксированных на стенках балок перекрытий, отличалась в разы. Причиной высокой плотности окислов являлось межбалочное заполнение в виде кирпичных сводиков, препятствующих свободному накоплению коррозионных слоев. На другом перекрытии того же здания коррозионные «пироги» вдоль стенок двутавровых балок имели суммарную толщину 5,0-7,0 см при толщине потерь стали 5,0-7,0 мм (рис. 6). В данном случае заполнение между балками было сделано в виде деревянного наката.

Рисунок 6. Слоистые коррозионные окислы, отобранные с балок перекрытия

Подводя итоги, необходимо отметить, что указанный косвенный метод мог бы быть реализован только в случае, когда продукты коррозии накапливаются за весь коррозионный период и не удаляются с места образования. В условиях открытых элементов (металлические фермы, колонны и пр.) невозможно однозначно определить суммарную толщину продуктов коррозии, которые могли либо быть счищены во время эксплуатации, либо просто упали с конструкции под собственным весом.

Представление результатов измерения

Еще одной проблемой, не освещенной в литературе, является вопрос о том, как представлять результат измерения износа. Имеются следующие варианты: в абсолютных единицах (мм, мкм); в процентах от толщины отдельного элемента сечения (полки, стенки); в процентах от площади всего сечения. Необходимо отметить, что аварийный критерий коррозионного износа, имеющийся в документах , выражается в процентах от площади сечения. Как правило, износ, нормируемый как аварийный, составляет 25% площади.

Для выполнения поверочных расчетов мало иметь информацию о потере площади сечения (либо о фактической площади остаточного сечения). Такая информация может быть достаточной только для расчета растянутых элементов. Для расчета сжатых и изогнутых элементов необходимо знать фактические габариты всех элементов сечения (полок, стенок, перьев уголков и др.). Поэтому представление результатов измерений в процентах от площади сечения недостаточно информативно. Установить процент потери площади сечения прямым измерением не представляется возможным, так как данный параметр можно определить только пересчетом. Это утверждение обосновывается следующим: в случае одинаковой скорости коррозии всех элементов сечения величина потерь будет одинакова по абсолютной величине (мм), при этом износ в процентах будет равен только для элементов с одинаковой начальной толщиной. Однако случаи равномерной коррозии всех элементов сечения с одинаковой скоростью встречаются редко.

Часто ошибка исследователей связана с тем, что потери измеряются только в одном из элементов сечения, по которому и делают вывод о коррозионном износе сечения в целом. Такой подход ошибочен, так как в зависимости от пространственного расположения, типа сечения, доступа агрессивной среды и других факторов износ разных частей сечения будет различным . Характерным примером является коррозия двутавровых балок в воздушной среде. При равномерном доступе агрессивной среды большему износу будут подвергаться верхняя поверхность горизонтально расположенных частей сечения (например, полок). Это происходит за счет скопления на них влаги, пыли, продуктов коррозии, ускоряющих процесс разрушения.

При определенных условиях, связанных, как правило, с доступом агрессивной среды, глубина коррозионных потерь сильно изменяется даже в пределах одного элемента сечения. В качестве примера на рис. 7. представлено сечение двутавровой балки надподвального перекрытия с коррозионными потерями. Как видно из рисунка, максимальные повреждения имеются на краях нижней полки и достигают 100% толщины. При этом по мере приближения к стенке процент износа уменьшается. Принять по измерению на краях, что полка, а тем более все сечение полностью утрачено, было бы в корне неправильным.

Рисунок 7. Неравномерное коррозионное повреждение нижней полки двутавровой балки надподвального перекрытия

Исходя из вышесказанного, для качественного выполнения обследования и представления его результатов необходимо:

Производить измерение остаточной толщины во всех элементах сечения, имеющих признаки повреждения;

При неравномерном коррозионном повреждении в пределах части сечения определять минимальные и максимальные толщины, а также выявлять зоны максимальных потерь (строить конкретный профиль остаточного сечения);

При определении потери площади сечения производить ее расчет по данным толщинометрии каждого из элементов сечения.

Практический пример

Для иллюстрации описанного выше приведем результаты обследования, задачей которого было определение процента коррозионного износа ферм покрытия.

Обследуемые металлические фермы (рис. 8) расположены в производственном корпусе кирпичного завода и перекрывают пролет 36 м. Элементы поясов и решеток ферм преимущественно выполнены из спаренных уголков, образующих тавровое сечение (рис. 9). Верхний пояс в крайних панелях выполнен из сварного двутавра с различной шириной полок. Соединения элементов выполнены на сварке с фасонками. Согласно проектной документации элементы ферм изготовлены из разных марок стали: элементы решетки из ВСтЗпс 6 по ГОСТ 380-71, элементы поясов из 14 Г 2 по ГОСТ 19281-73, фасонки из ВСтЗспб по ГОСТ 380-71.

Рисунок 8. Общий вид обследованных ферм

Рисунок 9. Сечение одного из элементов фермы

Зачистка поверхности в зазоре между уголками весьма трудоемка, а использование механических толщиномеров без удаления продуктов коррозии приводит к значительной погрешности измерения. Для решения поставленной задачи был использован ультразвуковой толщиномер А 1207 с рабочей частотой 2,5 МГц. Диапазон устанавливаемых скоростей варьируется от 1000 до 9000 м / с, что позволяет производить калибровку прибора для различных конструкционных сталей.

Рисунок 10. Коррозионное повреждение элемента фермы

В ходе обследования выполнен визуальный осмотр металлических элементов ферм, в результате которого установлены наличие повсеместного износа защитных окрасочных покрытий и сплошная коррозия металлических элементов (рис. 10). Измерения остаточной толщины выполнялись на наиболее поврежденных по визуальным признакам участках элементов ферм.

Ввиду длительной эксплуатации без своевременных периодических ремонтов и восстановления защитных покрытий элементы ферм на всей площади имели коррозионное повреждение.

Таким образом, определение начальной толщины сечения по измерению на неповрежденном участке не представлялось возможным. С учетом этого была предпринята попытка сопоставления фактических габаритов сечений с ближайшим большим (по толщине профиля) сечением по сортаменту. Определенные таким образом коррозионные потери составили 25-30%, что, согласно требованиям норматива , является аварийным признаком.

После первоначального анализа (сопоставления с сортаментом) заказчиком была найдена и предоставлена проектная документация. В результате анализа проекта установлено, что часть элементов фермы была выполнена из профилей большего сечения (по толщине и габаритам), чем указано в проекте. С учетом изначального применения профилей большего сечения и их коррозионного износа было выявлено, что фактические толщины данных элементов превосходят проектные. Таким образом, несущая способность, предусмотренная проектом для данных элементов, обеспечена. Коррозионные потери той части элементов, сечение которых соответствует проектным данным, оказались не столь существенными (не более 10%).

Итак, при определении коррозионного износа на основе сравнения с проектной документацией было выявлено, что его величина не превышает 10% площади сечения некоторых элементов. При отсутствии проектной документации и использовании в качестве изначальных сечений по сортаменту техническое состояние конструкций ошибочно могло быть признано аварийным.

Заключение

В качестве выводов по изложенному материалу можно выделить следующее.

1. Показано, что наиболее удобным и производительным, а иногда и единственно возможным методом для определения остаточной толщины стальных конструкций является ультразвуковой эхо - метод. Использование механических толщиномеров можно рекомендовать только в случае отсутствия или невозможности применения ультразвуковых толщиномеров (например, при низких температурах воздуха).

2. Обосновано, что косвенный метод по определению коррозионных потерь на основе измерения толщины продуктов коррозии неприменим ввиду недостоверности получаемых результатов.

3. Представление коррозионных потерь металла в процентном выражении дает качественную оценку состояния конструкции, а также позволяет оценить скорость коррозии.

4. Состояние конструкций в большинстве случаев необходимо определять поверочным расчетом. Для этого необходимо иметь информацию об остаточных геометрических характеристиках поврежденного сечения.

5. Разработан алгоритм определения коррозионного износа, который рекомендуется применять в практике обследования объектов (рис. 11).

6. Требуется обновление разделов нормативных документов, регламентирующих инструментальную оценку коррозионного износа и классифицирующих техническое состояние металлических конструкций с учетом предлагаемой методики.

Рисунок 11. Алгоритм оценки коррозионного износа (* при сплошной коррозии металла)

Литература

1. Пузанов А. В., Улыбин А. В. Методы обследования коррозионного состояния арматуры железобетонных конструкций // Инженерно - строительный журнал. 2011. № 7(25). С. 18-25.

2. Добромыслов А. Н. Диагностика повреждений зданий и инженерных сооружений. М.: АСВ, 2006. 256 с.

3. Пособие по обследованию строительных конструкций зданий. М.: АО «ЦНИИПРОМЗДАНИЙ», 1997. 179 с.

4. Ремнев В. В., Морозов А. С., Тонких Г. П. Обследование технического состояния строительных конструкций зданий и сооружений: Учебное пособие для вузов ж.- д. транспорта. М.: Маршрут, 2005. 196 с.

5. Пособие по контролю состояния строительных металлических конструкций зданий и сооружений в агрессивных средах, проведению обследований и проектированию восстановления защиты конструкций от коррозии (к СНиП 2.03.11-85). М.: ГОССТРОЙ СССР, 1987. 23 с.

6. Гуревич А. К. [и др.] Таблица: Методы и задачи толщинометрии // В мире НК. 2008. № 2(40). С. 4.

7. Юнникова В. В. Исследование и разработка методов и средств повышения достоверности ультразвукового контроля толщины: дис.... канд. техн. наук. Хабаровск, 1999. 107 с.

8. Юнникова В. В. О достоверности ультразвукового контроля толщины // Контроль и диагностика. 1999. № 9. С. 31-34.

9. Broberg P., Runnemalm A., Sjodahl M. Improved corner detection by ultrasonic testing using phase analysis// Ultrasonics. 2013. № 53(2). Pp. 630-634.

10.Xiong R., Lu Z., Ren Z., Xu C. Experimental research on small diameter concrete-filled steel tubular by ultrasonic detection // Applied Mechanics and Materials. 2012. Vol. 226-228. Pp. 1760-1765.

11. Tang R., Wang S., Zhang Q. Study in ultrasonic flaw detection for small-diameter steel pipe with thick wall // International Journal of Digital Content Technology and its Applications. 2012. № 6(16). Pp. 17-27.

12. Самокрутов А. А., Шевалдыкин ВТ. Ультразвуковая эхо - томография металлоконструкций. Состояние и тенденции // Заводская лаборатория. Диагностика материалов. 2007. № 1. С. 50-59.

13. Данилов В. Н., Самокрутов А. А. Моделирование работы пьезопреобразователей с сухим точечным контактом в режиме излучения // Дефектоскопия. 2003. № 8. С. 11-23.

14. Introduction to Phased Array Ultrasonic Technology Applications: R/D Tech Guideline. Quebec: R/D Tech inc., 2004. 368 p.

15. Samokrutov A. A., Kozlov V. N., Shevaldykin V. G. New approaches and hardware means of ultrasonic thickness measurement with the usage of one-element single probes // 8th European conference on Non-Destructive Testing, Barcelona, 17-21 June, 2002. Pp. 134-139.

16. Самокрутов А. А., Шевалдыкин В. Г., Козлов В. Н, Алёхин С. Т., Мелешко И. А., Пастушков П. С. А 1207 - Ультразвуковой толщиномер нового поколения // В мире НК. 2001. № 2(12). С. 23-24.

17. Fowler K.A., Elfbaum G. M., Smith К. A., Nelligan T. J. Theory and application of precision ultrasonic thickness gaging [Электронный ресурс]. URL: http://www.ndt.net/article/w... (дата обращения: 09.01.2013).

18. Сорокин Ю. Н. Ультразвуковые методы неразрушающего контроля // Сб. ВИНИТИ. Итоги науки и техники: Метрология и измерительная техника. 1979. Т.4. С.253-290.

19. Гмырин С. Я. Влияние шероховатости контактной поверхности на показания ультразвуковых толщиномеров // Дефектоскопия. 1993. № 10. С. 29-43.

20. Гмырин С. Я. К вопросу о толщине стенок изделия и погрешности ее измерения в ультразвуковой толщинометрии в случае значительной коррозии поверхности ввода // Дефектоскопия. 1996. № 11. С. 49-63.

21. Землянский А. А., Вертынский О. С. Опыт выявления дефектов и трещин в крупноразмерных резервуарах для хранения углеводородов // Инженерно - строительный журнал. 2011. № 7(25). С. 40-44.

22. ГОСТ Р 53778-2010. Здания и сооружения. Правила обследования и мониторинга технического состояния. Введ. 01.01.2011. М., 2010. 60 с.

23. Старцев С. А. Проблемы обследования строительных конструкций, имеющих признаки биоповреждения // Инженерно - строительный журнал. 2010. № 7(17). С. 41-46.

24. ТСН 50-302-2004. Проектирование фундаментов зданий и сооружений в Санкт - Петербурге. Введ. 05.08.04. СПб., 2004. 57 с.

25. Прищепова Н. А. Долговечность стальных ферм покрытий промзданий предприятий цветной металлургии на крайнем севере: автореф. дис.... канд. техн. наук. Норильск.: Норильский индустр. инст - т, 1997. 25 с.

  • 1. Основные понятия и показатели надёжности (надёжность, безотказность, ремонтопригодность, долговечность и др.). Характеристика.
  • 2. Взаимосвязь качества и надёжности машин и механизмов. Возможность оптимального сочетания качества и надёжности.
  • 3. Способы определения количественных значений показателей надёжности (расчётные, экспериментальные, эксплуатационные и др.). Виды испытаний на надёжность.
  • 4. Способы повышения надёжности технических объектов на стадии проектирования, в процессе производства и эксплуатации.
  • 5. Классификация отказов по уровню их критичности (по тяжести последствий). Характеристика.
  • 7. Основные разрушающие факторы, действующие на объекты в процессе эксплуатации. Виды энергии, оказывающие влияние на надёжность, работоспособность и долговечность машин и механизмов. Характеристика.
  • 8. Влияние физического и морального износа на предельное состояние объектов трубопроводного транспорта. Способы продления периода исправной эксплуатации конструкции.
  • 9. Допустимые и недопустимые виды повреждений деталей и сопряжений.
  • 10. Схема потери работоспособности объектом, системой. Характеристика предельного состояния объекта.
  • 11. Отказы функциональные и параметрические, потенциальные и фактические. Характеристика. Условия, при которых отказ может быть предотвращён или отсрочен.
  • 13. Основные типы структур сложных систем. Особенности анализа надёжности сложных систем на примере магистрального трубопровода, насосной станции.
  • 14. Способы расчёта надёжности сложных систем по надёжности отдельных элементов.
  • 15. Резервирование как способ повышения надёжности сложной системы. Разновидности резервов: ненагруженный, нагруженный. Резервирование систем: общее и раздельное.
  • 16. Принцип избыточности как способ повышения надежности сложных систем.
  • 17. Показатели надежности: наработка, ресурс технический и его виды, отказ, срок службы и его вероятностные показатели, работоспособность, исправность.
  • 19. Надежность и качество, как технико-экономические категории. Выбор оптимального уровня надежности или ресурса на стадии проектирования.
  • 20. Понятие «отказ» и его отличие от «повреждения». Классификация отказов по времени их возникновения (конструкционные, производственные, эксплуатационные).
  • 22. Деление мт на эксплуатационные участки. Защита трубопроводов от перегрузок по давлению.
  • 23. Причины и механизм коррозии трубопроводов. Факторы, способствующие развитию коррозии объектов.
  • 24. Коррозионное поражение труб магистральных трубопроводов (мт). Разновидности коррозионного поражения труб мт. Влияние процессов коррозии на изменение свойств металлов.
  • 25. Защитные покрытия для трубопроводов. Требования, предъявляемые к ним.
  • 26. Электро-хим. Защита трубопроводов от коррозии, ее виды.
  • 27. Закрепление трубопроводов на проектных отметках, как способ повышения их надежности. Способы берегоукрепления в створах подводных переходов.
  • 28. Предупреждение всплытия трубопроводов. Методы закрепления трубопроводов на проектных отметках на обводняемых участках трассы.
  • 29. Применение системы автоматизации и телемеханизации технологических процессов для обеспечения надежной и устойчивой работы мт.
  • 30. Характеристики технического состояния линейной части мт. Скрытые дефекты трубопроводов на момент пуска в эксплуатацию и их виды.
  • 31. Отказы запорно-регулирующей арматуры мт. Их причины и последствия.
  • 32. Отказы механо - технологического оборудования нпс и их причины. Характер отказов магистральных насосов.
  • 33. Анализ повреждений основного электротехнического оборудования нпс.
  • 34. Чем определяется несущая способность и герметичность резервуаров. Влияние скрытых дефектов, отклонений от проекта, режимов эксплуатации на техническое состояние и надежность резервуаров.
  • 35. Применение системы технического обслуживания и ремонта (тор) при эксплуатации мт. Задачи, возлагаемые на систему тор. Параметры, диагностируемые при контроле технического состояния объектов мт.
  • 36. Диагностика объектов мт, как условие обеспечения их надежности. Контроль состояния стенок труб и арматуры методами разрушающего контроля. Испытания трубопроводов.
  • 37. Контроль состояния стенок трубопроводов методами неразрушающего контроля. Аппараты для диагностирования: самоходные и перемещаемые потоком перекачиваемой жидкости.
  • 38. Диагностика напряженно-деформированного состояния линейной части трубопровода.
  • 39, 40, 41, 42. Диагностика наличия утечек жидкости из трубопроводов. Методы диагностики мелких утечек в мнп и мнпп.
  • 1. Визуальный
  • 2. Метод понижения давления
  • 3. Метод отрицательных ударных волн
  • 4. Метод сравнения расходов
  • 5. Метод линейного баланса
  • 6. Радиоактивный метод
  • 7. Метод акустической эмиссии
  • 8. Лазерный газоаналитический метод
  • 9. Ультразвуковой метод (зондовый)
  • 43. Методы контроля состояния изоляционных покрытий трубопроводов. Факторы, приводящие к разрушениям изоляционных покрытий.
  • 44. Диагностика технического состояния резервуаров. Визуальный контроль.
  • 45. Определение скрытых дефектов в металле и сварных швах резервуара.
  • 46. Контроль коррозионного состояния резервуаров.
  • 47. Определение механических свойств металла и сварных соединений резервуаров.
  • 48. Контроль геометрической формы и осадки основания резервуара.
  • 49. Диагностика технического состояния насосных агрегатов.
  • 50. Профилактическое обслуживание мт, как способ повышения надежности в процессе его эксплуатации. Стратегии то и ремонта.
  • 51. Система планово-предупредительного ремонта (ппр) и ее влияние на надежность и долговечность мт. Виды то и ремонта.
  • 52. Перечень мероприятий, включаемых в систему ппр трубопроводных систем.
  • 53. Недостатки системы ппр по наработке и основные направления ее совершенствования.
  • 54. Капитальный ремонт линейной части мт, его основные этапы. Виды капитального ремонта нефтепроводов.
  • 55. Последовательность и содержание работ при ремонте трубопровода с подъемом и укладки его на лежки в траншее.
  • 56. Аварии на мт, их классификация и организация ликвидации аварий.
  • 57. Причины аварий и виды дефектов на мт.
  • 58. Технология аварийно - восстановительных работ трубопроводов.
  • 59. Способы герметизации трубопроводов. Требования, предъявляемые к герметизирующим устройствам.
  • 60. Метод герметизации трубопровода через «окна».
  • Толщину листов верхних поясов, начиная с четвертого, проверяют по образующей вдоль шахтной лестницы по высоте пояса (низ, середина, верх). Толщину нижних трех поясов проверяют по четырем диаметрально противо­положным образующим. Толщины патрубков, размещенных на листах первого пояса, измеряют в нижней части, не менее, чем в двух точках.

    Толщину листов днища и кровли измеряют по двум взаимноперпенди- кулярным направлениям. Число измерений на каждом листе должно быть не менее двух. В местах, где имеется коррозионное разрушение листов кровли, вырезаются отверстия размером 500x500 мм и производятся измерения сече­ний элементов несущих конструкций. Толщину листов понтона и плавающей крыши измеряют на ковре, а также на наружных, внутренних и радиальных ребрах жесткости.

    Результаты измерений осредняются. При изменении толщины листа в нескольких точках в качестве фактической принимается среднеарифмитиче- ская величина. Измерения, давшие результат, отличающийся от среднеариф- митической величины более, чем на 10 % в меньшую сторону, указываются дополнительно. При измерении толщины нескольких листов в пределах одно­го пояса или любого другого элемента резервуара за фактическую толщину принимается минимально замеренная толщина отдельного листа.

    Результаты измерений сравниваются с предельно допустимыми величи­нами толщин стенки, кровли, несущих конструкций, понтонов.

    Предельно допустимый износ листов кровли и днища резервуара не должен превышать 50 %, а окраек днища - 30 % проектной величины. Для не­сущих конструкций покрытия (ферм, балок) износ не должен превышать 30 % от проектной величины, а для листов понтона (плавающей крыши) - 50% в центральной части и 30 % для коробов.

    47. Определение механических свойств металла и сварных соединений резервуаров.

    Для определения фактической несущей способности и пригодности резервуара к дальнейшей эксплуатации весьма важно знать механические свойства основного металла и сварных соединений.

    Механические испытания производятся в случае, когда отсутствуют данные о первоначальных механических свойствах основного металла и сварных соединений, при значительной коррозии, при появлении трещин, а также во всех других случаях, когда имеется подозрение на ухудшение механических свойств, усталость при действии переменных и знакопеременных нагрузок, перегрева, действия чрезмерно высоких нагрузок.

    Механические испытания основного металла выполняются в соответствии с требованиями ГОСТ 1497-73 и ГОСТ 9454-78. Они включают в себя определение пределов прочности и текучести, относительного удлинения и ударной вязкости. При механических испытаниях сварных соединений (согласно ГОСТ 6996-66) выполняют определение предела прочности, испытания на статический изгиб и ударную вязкость.

    В случаях, когда требуется определить причины ухудшения механических свойств металла и сварных соединений, появление трещин в различных элементах резервуара, а также характер и размеры коррозионного повреждения, находящегося внутри металла, производятся металлографические исследования.

    Для механических испытаний и металлографических исследований вырезают основной металл диаметром 300 мм в одной из четырех нижних поясов стенки резервуара.

    В процессе металлографических исследований определяют фазовый состав и размеры зерна, характер термической обработки, наличие неметаллических включений и характер коррозионного разрушения (наличие межкристал- лидной коррозии).

    Если в паспорте резервуара отсутствуют данные о марке металла, из которого он изготовлен, прибегают к химическому анализу. Для определения химического состава металла используются образцы, вырезанные для механических испытаний.

    Механические свойства и химический состав основного металла и сварных соединений должен соответствовать указаниям проекта, а также требованиям стандартов и технических условий.

Оценка коррозионного состояния трубопровода, находящегося в электрическом поле ЛЭП ПТ, производится по разности потенциалов труба - земля и величине тока в трубопроводе.
Ьлок-схема комплексной оценки технического состояния ЛЧ МГ. Оценка коррозионного состояния ЛЧ МГ в перспективе должна стать составной частью комплексной оценки технического состояния ЛЧ МГ.
Схема возникновения и распространения блуждающих. При оценке коррозионного состояния газопровода важж знать как средние, так и максимальные значения разности по тенциалов.
Приборы для оценки коррозионного состояния должны включать в себя датчики, систему регистрации и соответствующие источники энергии. При использовании магнитных и электромагнитных методов возможно применение различных намагничивающих систем. Проблему сканирования решают либо небольшим числом датчиков, движущихся внутри трубы по винтовой линии, либо большим числом датчиков, движущихся поступательно вместе с намагничивающей системой и расположенных по периметру прибора. В этом случае наиболее целесообразно использование двухкольцевой шахматной системы расположения датчиков для устранения возможных пропусков дефектов на трубе. Выпускаемые в США приборы типа Лайналог состоят из трех секций, соединенных шарнирами. В первой секции находятся источники питания и уплотнительные манжеты, во второй - электромагнит с системой кассет для датчиков, в третьей - электронные узлы и записывающее устройство, Их используют для проведения обследований трубопроводов.
Шурфование для оценки коррозионного состояния трубопровода необходимо проводить с полным вскрытием трубы и возможностью осмотра ее нижней образующей. Длина вскрытой части трубы должно быть не менее трех ее диметров.
Эффективным способом оценки коррозионного состояния оборудования (на стадиях его проектирования, эксплуатации, реновации) является коррозионный мониторинг - система наблюдений и прогнозирования коррозионного состояния объекта с целью получения своевременной информации о его возможных коррозионных отказах.
В табл. 6 дается оценка фактического коррозионного состояния систем горячего водоснабжения из черных труб в ряде городов. Кроме того, для сравнения приведены расчетные индексы насыщения воды при 60 С, данные по содержанию в воде растворенного кислорода, свободной углекислоты и оценка коррозионной активности.
Распределение областей скорости движения водогазонефтяного потока для трубопро-водов различных диаметров. Коррозионные обследования обсадных колонн проводят для оценки коррозионного состояния их (как по глубине, так и по площади месторождения), определения параметров электрохимической защиты, выявления причин негерметичности обсадных колонн в процессе эксплуатации и контроля защищенности.
На основе анализа изложенных выше данных по оценке коррозионного состояния и надежности оборудования и ТП ОНГКМ, результатов внутритрубной и наружной дефектоскопии, натурных и лабораторных коррозионно-механических испытаний, металлографических исследований темплетов и образцов, результатов технического диагностирования конструкций, а также с учетом действующих нормативно-технических документов (НТД), разработана методика диагностирования оборудования и ТП сероводородсодержащих нефтегазовых месторождений.
В нашей стране и за рубежом разрабатывают методы и приборы для оценки коррозионного состояния трубопровода без его вскрытия. Наиболее перспективны методы, основанные на пропускании по трубопроводу специально оборудованного прибора, фиксирующего очаги коррозионного поражения стенки трубы с внутренней и наружной сторон. В литературе приводят данные по методам контроля состояния трубопроводов. Основное внимание уделяют магнитным и электромагнитным методам, При этом предпочтение отдают последним. Здесь же кратко описываются ультразвуковые и радиографические методы.
Модели, не описываемые какими-либо математическими уравнениями и представимые в виде набора табличных коэффициентов или номограмм, рекомендованных для оценки коррозионного состояния металлов.

Для оценки состояния покрытия на трубопроводе при эксплуатации целесообразно использовать переходное сопротивление изолированного трубопровода, параметры, характеризующие проницаемость материала покрытия, и число антиоксиданта (для стабилизированных композиций), оставшегося в покрытии. Для оценки коррозионного состояния стенки трубы следует использовать данные замеров коррозионных потерь металла под покрытием или в местах его дефекта, а также размеры и взаиморасположение коррозионных поражений на стенке трубы. Ко второй - местная коррозия (каверны, питтинги, пятна), одиночные (при расстоянии между ближайшими краями соседних поражений более 15 см), групповые (при расстоянии между ближайшими краями соседних поражений от 15 до 0 5 см) и протяженные (при расстоянии между ближайшими краями соседних поражений менее 0 5 см) поражения. Одиночные коррозионные поражения не приводят к возникновению отказов на трубопроводах.
Для оценки состояния изоляционного покрытия на трубопроводе в процессе эксплуатации необходимо использовать значения переходного сопротивления трубопровода, параметры, характеризующие проницаемость материала покрытия, и количество актиоксиданта (для стабилизированных композиций), оставшегося в изоляции. Для оценки коррозионного состояния стенки трубы необходимо использовать данные замеров коррозионных потерь металла под покрытием или в местах его дефекта, а также размеры и взаиморасположения коррозионных поражений на стенке трубы.
При оценке коррозионного состояния трубопровода определяют виды коррозии, степень поврежденности коррозией наружной стенки труб с обобщенной характеристикой участков, оценивают максимальную и среднюю скорость коррозии, прогнозируют коррозионное состояние участка на 3 - 5 лет.
В табл. 9.12 приведена оценка коррозионного состояния трубопровода при полном наборе влияющих факторов и соответствующие рекомендации.
На практике для количественной оценки коррозионной стойкости металлов можно использовать любое свойство или характеристику металла, которые существенно и закономерно изменяются при коррозии. Так, в системах водоснабжения оценку коррозионного состояния труб можно дать по изменению во времени гидравлического сопротивления системы или ее участков.
Для изыскания возможности уменьшения потерь металла в результате коррозии и снижения значительных прямых и косвенных потерь от коррозии необходима оценка коррозионного состояния аппаратов и коммуникаций химико-технологических систем. При этом следует провести как оценку коррозионного состояния химико-технологической системы, так и прогнозирование возможного развития коррозии и влияния этого процесса на работоспособность аппаратов и коммуникаций химико-технологических систем.
Методика измерений приведена в разделе II. Объем и комплекс измерений, необходимых для оценки коррозионного состояния сооружения, предусмотрены ведомственными инструкциями, утвержденными в установленном порядке.
Сложность и своеобразие протекания процесса коррозии подземных металлических и железобетонных конструкций обусловлены особыми условиями подземной среды, где взаимодействуют атмосфера, биосфера и гидросфера. В связи с этим особое внимание уделяется разработке и созданию аппаратуры и систем для оценки коррозионного состояния объектов, находящихся под землей. Такая оценка может проводиться на основе измерения усредненного по времени потенциала металлической конструкции относительно земли. Для определения среднего значения потенциала разработаны приборы - интеграторы блуждающих токов. Они просты в изготовлении, не требуют специальных источников электропитания и надежны в эксплуатации. Использование этих приборов дает информацию о характере пространственного распределения анодных, катодных и знакопеременных зон для выбора места подключения средств электрохимической защиты и интегрального учета эффективности ее работы. Эта информация может быть использована как в процессе проектирования, строительства и монтажа нового оборудования, так и в процессе эксплуатации. Появляется возможность осуществления плановых мероприятий по обеспечению высокой надежности металлических и железобетонных конструкций в условиях длительной эксплуатации.
Оценку опасности коррозии стальных подземных трубопроводов, вызываемой влиянием электрифицированного транспорта, работающего на переменном токе, следует производить на основании результатов замеров разности потенциалов между трубопроводом и окружающей средой. Методика измерений приведена в разделе II. Объем и комплекс измерений, необходимые для оценки коррозионного состояния трубопровода, определяются ведомственными инструкциями, утвержденными в установленном порядке.
Контроль режима ведут на основании результатов анализов проб вод и пара, показаний рН - метров питательной и котловой воды, периодических определений количественного и качественного состава отложений, а также оценки состояния металла котла в коррозионном отношении. Оперативный персонал особо контролирует два основных показателя режима: дозу комплесона (по убыли уровня в мернике рабочего раствора 7 с пересчетом на расход питательной воды) и рН котловой воды чистого отсека. Вырезка представительных образцов труб поверхности нагрева, качественный и количественный анализ отложений, оценка коррозионного состояния металла в сравнении с его исходным состоянием в первые 1 - 2 года отработки режима выполняются через каждые 5 - 7 тыс. ч работы.
Поэтому имеют место случаи, когда из-за неточного определения расположения коррозионных дефектов на поверхности и внутри трубопровода вследствие перестраховки допускается неоправданная замена трубопровода на значительных участках, что приводит к большому перерасходу государственных средств. Следовательно, требуется надежная оценка коррозионного состояния трубопроводов и своевременное и правильное проведение их ремонта на основании полученных данных. С этой целью в нашей стране разработаны, сконструированы и проходят испытания дефектоскопы для оценки коррозионного состояния трубопроводов без их вскрытия из траншеи.