Теорема которую невозможно доказать. «Доказана ли Великая теорема Ферма? Как пытались доказать теорему Фермера

Поскольку мало кто владеет математическим мышлением, то я расскажу о наикрупнейшем научном открытии – элементарном доказательстве Великой теоремы Ферма – на самом понятном, школьном, языке.

Доказательство было найдено для частного случая (для простой степени n>2), к которому (и к случаю n=4) легко сводятся и все случаи с составным n.

Итак, нужно доказать, что уравнение A^n=C^n-B^n решения в целых числах не имеет. (Здесь значок ^ означает степень.)

Доказательство проводится в системе счисления с простым основанием n. В этом случае в каждой таблице умножения последние цифры не повторяются. В обычной, десятичой системе, ситуация иная. Например, при умножении числа 2 и на 1, и на 6 оба произведения – 2 и 12 – оканчиваются на одинаковые цифры (2). А, например, в семеричной системе для цифры 2 все последние цифры разные: 0х2=...0, 1х2=...2, 2х2=...4, 3х2=...6, 4х2=...1, 5х2=...3, 6х2=...5, с набором последних цифр 0, 2, 4, 6, 1, 3, 5.

Благодаря этому свойству для любого числа А, не оканчивающегося на ноль (а в равенстве Ферма последняя цифра чисел А, ну или В, после деления равенства на общий делитель чисел А, В, С нулю не равна), можно подобрать такое множитель g, что число Аg будет иметь сколь угодно длинное окончание вида 000...001. Вот на такое число g мы и умножим все числа-основания A, B, C в равенстве Ферма. При этом единичное окончание сделаем достаточно длинным, а именно на две цифры длиннее, чем число (k) нулей на конце числа U=А+В-С.

Число U нулю не равно – иначе С=А+В и A^n<(А+В)^n-B^n, т.е. равенство Ферма является неравенством.

Вот, собственно, и вся подготовка равенства Ферма для краткого и завершающего исследования. Единственное, что мы еще сделаем: перепишем правую часть равенства Ферма – C^n-B^n, – используя школьную формулу разложения: C^n-B^n=(С-В)Р, или аР. А поскольку далее мы будем оперировать (умножать и складывать) только с цифрами (k+2)-значных окончаний чисел А, В, С, то их головные части можем в расчет не принимать и просто их отбросить (оставив в памяти лишь один факт: левая часть равенства Ферма является СТЕПЕНЬЮ).

Единственное, о чем стоит сказать еще, это о последних цифрах чисел а и Р. В исходном равенстве Ферма число Р оканчивается на цифру 1. Это следует из формулы малой теоремы Ферма, которую можно найти в справочниках. А после умножения равенства Ферма на число g^n число Р умножатеся на число g в степени n-1, которое, согласно малой теореме Ферма, также оканчивается на цифру 1. Так что и в новом эквивалентном равенстве Ферма число Р оканчивается на 1. И если А оканчивается на 1, то и A^n тоже оканчивается на 1 и, следовательно, число а тоже оканчивается на 1.

Итак, мы имеем стартовую ситуацию: последние цифры А", а", Р" чисел А, а, Р оканчиваются на цифру 1.

Ну а дальше начинается милая и увлекательная операция, называемая в преферансе «мельницей»: вводя в рассмотрение последующие цифры а"", а""" и так далее числа а, мы исключительно «легко» вычисляем, что все они также равны нулю! Слово «легко» я взял в кавычки, ибо ключ к этому «легко» человечество не могло найти в течение 350 лет! А ключик действительно оказался неожиданно и ошарашивающе примитивным: число Р нужно представить в виде P=q^(n-1)+Qn^(k+2). На второй член в этой сумме обращить внимание не стоит – ведь в дальнейшем доказательстве мы все цифры после (k+2)-й в числах отбросили (и это кардинально облегчает анализ)! Так что после отбрасывания головных частей чисел равенство Ферма принимает вид: ...1=аq^(n-1), где а и q – не числа, а всего лишь окончания чисел а и q! (Новые обозначения не ввожу, так это затрудняет чтение.)

Остается последний философский вопрос: почему число Р можно представить в виде P=q^(n-1)+Qn^(k+2)? Ответ простой: потому что любое целое число Р с 1 на конце можно представить в таком виде, причем ТОЖДЕСТВЕННО. (Можно представить и многими другими способами, но нам это не нужно.) Действительно, для Р=1 ответ очевиден: P=1^(n-1). Для Р=hn+1 число q=(n-h)n+1, в чем легко убедиться, решая уравнение [(n-h)n+1]^(n-1)==hn+1 по двузначным окончаниям. И так далее (но в дальнейших вычислениях у нас необходимости нет, так как нам понадобится представление лишь чисел вида Р=1+Qn^t).

Уф-ф-ф-ф! Ну вот, философия кончилась, можно перейти к вычислениям на уровне второго класса, разве что лишь еще раз вспомнить формулу бинома Ньютона.

Итак, введем в расмотрение цифру а"" (в числе а=а""n+1) и с ее помощью вычислим цифру q"" (в числе q=q""n+1):
...01=(а""n+1)(q""n+1)^(n-1), или...01=(а""n+1)[(n-q"")n+1], откуда q""=a"".

И теперь правую часть равенства Ферма можно переписать в виде:
A^n=(а""n+1)^n+Dn^(k+2), где значение числа D нас не интересует.

А вот теперь мы переходим к решающему выводу. Число а""n+1 является двузначным окончанием числа А и, СЛЕДОВАТЕЛЬНО, согласно простой лемме ОДНОЗНАЧНО определяет ТРЕТЬЮ цифру степени A^n. И более того, из разложения бинома Ньютона
(а""n+1)^n, учитывая, что к каждому члену разложения (кроме первого, что погоды изменить уже не может!) присоединяется ПРОСТОЙ сомножитель n (основание счисления!), видно, что эта третья цифра равна а"". Но с помощью умножения равенства Ферма на g^n мы k+1 цифру перед последней 1 в числе А превратили в 0. И, следовательно, а""=0!!!

Тем самым мы завершили цикл: введя а"", мы нашли, что и q""=а"", а в заключение и а""=0!

Ну и остается сказать, что проведя совершенно аналогичные вычисления и последующих k цифр, мы получаем заключительное равенство: (k+2)-значное окончание числа а, или С-В, – так же, как и числа А, – равно 1. Но тогда (k+2)-я цифра числа С-А-В РАВНА нулю, в то время как она нулю НЕ РАВНА!!!

Вот, собственно, и всё доказательство. Для его понимания вовсе не требуется иметь высшее образование и, тем более, быть профессиональным математиком. Тем не менее, профессионалы помалкивают...

Удобочитаемый текст полного доказательства расположен здесь:

Рецензии

Здравствуйте, Виктор. Мне понравилось Ваше резюме. "Не позволить умереть раньше смерти" - здорово, конечно, звучит. От встречи на Прозе с теоремой Ферма, честно говоря, обалдела! Разве ей здесь место? Есть научные, научно-популярные и чайниковые сайты. А в остальном, спасибо за Вашу литературную работу.
С уважением, Аня.

Уважаемая Аня, несмотря на довольно жесткую цензуру, Проза позволяет писать ОБО ВСЕМ. С теоремой Ферма положение таково: крупные математические форумы к ферматистам относятся косо, с хамством и в целом третируют, как могут. Однако на мелких российских, английских и французских форумах я последний вариант доказательства представил. Никаких контрдоводов никто пока не выдвинул, да и, уверен, не выдвинет (доказательство проверено весьма тщательно). В субботу опубликую философскую заметку о теореме.
На прозе почти нет хамов, и если с ними не якшаться, то довольно скоро они отлипают.
На Прозе представлены почти все мои работы, поэтому и доказательство также поместил сюда.
До скорого,

ФЕРМА ВЕЛИКАЯ ТЕОРЕМА - утверждение Пьера Ферма (французский юрист и по совместительству математик) о том, что диофантово уравнение X n + Y n = Z n , при показателе степени n>2, где n = целое число, не имеет решений в целых положительных числах. Авторский текст: "Невозможно разложить куб на два куба, или биквадрат на два биквадрата, или вообще степень, большую двух, на две степени с тем же самым показателем."

"Ферма и его теорема", Амадео Модильяни, 1920

Пьер придумал эту теорему 29 марта 1636-го года. А ещё через каких-то 29 лет скончался. Но тут-то всё и началось. Ведь состоятельный немецкий любитель математики по фамилии Вольфскель завещал сто тысяч марок тому, кто предъявит полное доказательство теоремы Ферма! Но ажиотаж вокруг теоремы был связан не только с этим, но и с профессиональным математическим азартом. Сам Ферма намекнул математическому сообществу, что знает доказательство - незадолго до смерти, в 1665-ом году он оставил на полях книги Диофанта Александрийского "Арифметика" следующую запись: "Я располагаю весьма поразительным доказательством, но оно слишком велико, чтобы его можно было разместить на полях."

Именно этот намёк (плюс, конечно, денежная премия) заставил математиков безуспешно тратить на поиск доказательства свои лучшие годы (по подсчётам американских учёных, только профессиональными математиками было потрачено на это 543 лет в общей сложности).

В какой-то момент (в 1901-ом) работа над теоремой Ферма приобрела сомнительную славу "работы, сродни поиску вечного двигателя" (появился даже уничижительный термин - "ферматисты"). И вдруг 23 июня 1993 года на математической конференции по теории чисел в Кембридже английский профессор математики из Принстонского университета (Нью-Джерси, США) Эндрю Уайлс объявил, что наконец-то доказал Ферма!

Доказательство, правда, было не только сложным, но и очевидно ошибочным, на что Уайлсу было указано его коллегами. Но профессор Уайлс всю жизнь мечтал доказать теорему, поэтому не удивительно что в мае 1994-го он представил на суд учёного сообщества новый, доработанный вариант доказательства. В нём не было стройности, красоты, и оно по-прежнему было весьма сложным - тот факт, что математики целый год (!) это доказательство анализировали, что бы понять, не является ли оно ошибочным, говорит сам за себя!

Но в итоге доказательство Уайлса было признано верным. А вот Пьеру Ферма его тот самый намёк в "Арифметике" математики не простили, и, фактически, стали считать его лжецом. Собственно, первым, кто рискнул усомниться в моральной чистоплотности Ферма был сам Эндрю Уайлс, который заметил, что "Ферма не мог располагать таким доказательством. Это доказательство ХХ века." Затем и среди других ученых укрепилось мнение, что Ферма "не мог доказать свою теорему другим путём, а доказать её тем путем, по которому пошёл Уайлс, Ферма не мог по объективным причинам."

На самом деле, Ферма конечно же мог доказать её, и чуть позже это доказательство будет аналитиками "Новой Аналитической Энциклопедии" воссоздано. Но - что же это за такие "объективные причины"?
Такая причина на самом деле только одна: в те годы, когда жил Ферма, не могла появиться гипотеза Таниямы, на которой и построил свой доказательство Эндрю Уайлс, ведь модулярные функции, которыми оперирует гипотеза Таниямы были открыты только в конце XIX века.

Как доказал теорему сам Уайлс? Вопрос непраздный - это важно для понимания того, каким образом свою теорему мог доказать сам Ферма. Уайлс построил своё доказательство на доказательстве гипотезы Таниямы, выдвинутой в 1955-ом 28-летним японским математиком Ютакой Таниямой.

Гипотеза звучит так: "каждой эллиптической кривой соответствует определенная модулярная форма". Эллиптические кривые, известные с давних пор, имеют двухмерный вид (располагаются на плоскости), модулярные же функции, имеют четырехмерный вид. Т.е гипотеза Таниямы соединила совершенно разные понятия - простые плоские кривые и невообразимые четырёхмерные формы. Сам факт соединения разномерных фигур в гипотезе показался учёным абсурдным, именно поэтому в 1955-ом ей не придали значения.

Однако осенью 1984 года о "гипотезе Таниямы" вдруг снова вспомнили, и не просто вспомнили, но связали её возможное доказательство с доказательством теоремы Ферма! Это сделал математик из Саарбрюкена Герхард Фрей, который сообщил учёному сообществу, что "если бы кому-нибудь удалось доказать гипотезу Таниямы, то тем самым была бы доказана и Великая теорема Ферма".

Что сделал Фрей? Он преобразовал уравнение Ферма в кубическое, затем обратил внимание на то, что эллиптическая кривая, полученная при помощи преобразованного в кубическое уравнения Ферма не может быть модулярной. Однако гипотеза Таниямы утверждала, что любая эллиптическая кривая может быть модулярной! Соответственно, эллиптическая кривая, построенная из уравнения Ферма не может существовать, значит не может быть целых решений и теоремы Ферма, значит она верна. Ну а в 1993-ем Эндрю Уайлс попросту доказал гипотезу Таниямы, а значит и теорему Ферма.

Однако, теорему Ферма можно доказать значительно проще, на основе той же самой многомерности, которой оперировали и Танияма, и Фрей.

Для начала, обратим внимание на условие, оговорённое самим Пьером Ферма - n>2. Для чего было нужно это условие? Да лишь для того, что при n=2 частным случаем теоремы Ферма становится обычная теорема Пифагора Х 2 +Y 2 =Z 2 , которое имеет бесчисленное множество целых решений - 3,4,5; 5,12,13; 7,24,25; 8,15,17; 12,16,20; 51,140,149 и так далее. Таким образом, теорема Пифагора является исключением из теоремы Ферма.

Но почему именно в случае с n=2 возникает подобное исключение? Всё становится на свои места, если увидеть взаимосвязь между степенью (n=2) и мерностью самой фигуры. Пифагоров треугольник - двухмерная фигура. Не удивительно, что Z (то есть гипотенуза), может быть выражена через катеты (X и Y), которые могут быть целыми числами. Размер угла (90) дает возможность рассматривать гипотенузу как вектор, а катеты - векторы, расположенные на осях и идущие из начала координат. Соответственно, можно выразить двумерный вектор, не лежащий ни на одной из осей, через векторы, на них лежащие.

Теперь, если перейти к третьему измерению, а значит к n=3, для того чтобы выразить трёхмерный вектор, будет недостаточно информации о двух векторах, а следовательно, выразить Z в уравнении Ферма можно будет как минимум через три слагаемых (три вектора, лежащих, соответственно, на трех осях системы координат).

Если n=4, значит, слагаемых должно быть уже 4, если n=5, то слагаемых должно быть 5 и так далее. В этом случае, целых решений будет хоть отбавляй. Например, 3 3 +4 3 +5 3 =6 3 и так далее (другие примеры для n=3, n=4 и так далее можете подобрать самостоятельно).

Что из всего этого следует? Из этого следует, что теорема Ферма действительно не имеет целых решений при n>2 - но лишь потому, что само по себе уравнение некорректно! С таким же успехом можно было бы пытаться выразить объём параллелепипеда через длины двух его рёбер - разумеется, это невозможно (целых решений никогда не будет найдено), но лишь потому, что для нахождения объёма параллелепипеда нужно знать длины всех трёх его рёбер.

Когда знаменитого математика Давида Гилберта спросили, какая задача сейчас для науки наиболее важна, он ответил "поймать муху на обратной стороне Луны". На резонный вопрос "А кому это надо?" он ответил так: "Это никому не надо. Но подумайте над тем, сколько важных сложнейших задач надо решить, чтобы это осуществить".

Другими словами, Ферма (юрист в первую очередь!) сыграл со всем математическим миром остроумную юридическую шутку, основанную на неверной постановке задачи. Он, фактически, предложил математикам найти ответ, почему муха на другой стороне Луны жить не может, а на полях "Арифметики" хотел написать лишь о том, что на Луне просто нет воздуха, т.е. целых решений его теоремы при n>2 быть не может лишь потому, что каждому значению n должно соответствовать определённое количество членов в левой части его уравнения.

Но была ли это просто шутка? Отнюдь. Гениальность Ферма заключается именно в том, что он фактически первый увидел взаимосвязь между степенью и мерностью математической фигуры - то есть, что абсолютно эквивалентно, количеством членов в левой части уравнения. Смысл его знаменитой теоремы был именно в том, чтобы не просто натолкнуть математический мир на идею этой взаимосвязи, но и инициировать доказательство существования этой взаимосвязи - интуитивно понятной, но математически пока не обоснованной.

Ферма как никто другой понимал, что установление взаимосвязи между, казалось бы, различными объектами чрезвычайно плодотворно не только в математике, но и в любой науке. Такая взаимосвязь указывает на какой-то глубокий принцип, лежащий в основе обоих объектов и позволяющий глубже понять их.

Например, первоначально физики рассматривали электричество и магнетизм как совершенно не связанные между собой явления, а в XIX веке теоретики и экспериментаторы поняли, что электричество и магнетизм тесно связаны между собой. В результате было достигнуто более глубокое понимание и электричества, и магнетизма. Электрические токи порождают магнитные поля, а магниты могут индуцировать электричество в проводниках, находящихся вблизи магнитов. Это привело к изобретению динамомашин и электромоторов. В конце концов было открыто, что свет представляет собой результат согласованных гармонических колебаний магнитного и электрического полей.

Математика времён Ферма состояла из островов знания в море незнания. На одном острове обитали геометры, занимающиеся изучением форм, на другом острове теории вероятностей математики изучали риски и случайность. Язык геометрии сильно отличался от языка теории вероятностей, а алгебраическая терминология была чужда тем, кто говорил только о статистике. К сожалению, математика и наших времён состоит примерно из таких же островов.

Ферма первым понял, что все эти острова взаимосвязаны. И его знаменитая теорема - ВЕЛИКАЯ ТЕОРЕМА ФЕРМА - отличное тому подтверждение.

Пьер Ферма утверждал, что:

невозможно разложить куб на два куба или биквадрат на два биквадрата и вообще невозможно разложить какую-либо степень, большую чем два, на две степени с таким же показателем.

Как же подойти к доказательству этого утверждения Ферма?

(картинка для привлечения внимания)

Представим себе, что мы нашли или построили прямоугольный треугольник со следующими сторонами: катеты - , и гипотенузой где (p, q, k, n) - числа натуральные. Тогда по теореме Пифагора получим или . Таким образом, если мы найдем или построим такой треугольник, то мы опровергнем Ферма. Если же мы докажем, что такой треугольник не существует, то мы докажем теорему.

Так как в утверждении речь идёт о натуральных числах, то найдем, чему равняется разность квадратов двух нечетных натуральных чисел. Т.е. решим уравнение . Для этого построим прямоугольные треугольники, гипотенуза которых равна , а катет равен , где и (a > b) . Тогда по теореме Пифагора можно вычислить второй катет по формуле (1) , или (2) . Мы получили, что стороны этих треугольников равны и . Таким образом, мы можем перебрать все пары чисел a и b из натурального множества (назовем эти числа “генераторами” данного тождества) и получить все возможные треугольники с заданными свойствами , . Докажем необходимость данного решения. Перепишем (1) в виде . Так как Z и Y нечетные числа, значит можно написать (Z - Y) = 2b и (Z + Y)=2a. Решая их относительно Z и Y, получим Z = (a + b) и Y = (a - b). Тогда можно записать, что X = 4ab и, подставляя эти значения в (1) , получим .

Примечание
Чтобы избежать получения подобных треугольников, и, учитывая, что Z и Y - нечетные числа по условию, числа a и b должны быть взаимно простыми и разной четности. Далее будем считать, что четным является число a . Для того, чтобы упорядочить распределение прямоугольных треугольников в множестве натуральных чисел N , поступим следующим образом: из этого множества вычтем все числа, которые являются четными степенями натуральных чисел. Обозначим это множество , где n - натуральное число. Затем из оставшихся натуральных чисел вычтем все числа, которые являются нечетными (≥3) степенями натуральных чисел и обозначим множество этих чисел как . Оставшиеся натуральные числа составят множество, числа которого есть натуральные числа в первой степени. Обозначим это множество . Очевидно, соединение этих 3-х множеств есть множество натуральных чисел, или . Множество представим как ряд = {1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17,………}. Представим множества и в виде рядов. Тогда множество будет представлять собой матрицу, состоящую из бесконечного числа строк, каждая строка будет состоять из чисел ряда , возведенных в степень 2n , а n - есть номер строки. Так первая строка состоит из квадратов всех чисел ряда , вторая строка состоит из 4-х степеней этих чисел и т.д. Рассмотрим множество , которое будет представлять собой матрицу, состоящую из бесконечного числа строк, каждая строка которой будет состоять из чисел ряда , возведенных в степень 2n+1 . (n - есть номер строки). Так первая строка этой матрицы состоит из кубов чисел ряда , вторая строка состоит из чисел ряда в пятой степени и т.д. Рассмотрим множество . Т.к. , то примем тот же алгоритм построения треугольников (см. выше). Найдем «генераторы» тождества, Это будут числа , где , составим тождество: (3) , мы получили множество прямоугольных треугольников с целочисленными сторонами. Здесь - гипотенуза, - катет и - второй катет. Для опровержения утверждения Ферма нужно, чтобы стороны X, Y, Z искомого треугольника равнялись (4) . Где (p, q, k, n) - натуральные числа. По теореме Пифагора будем иметь или и утверждение Ферма будет опровергнуто. Из тождества видно, что . Рассмотрим последнее равенство , в этом равенстве «p » ни при каких значениях «a и b » не будет натуральным числом, если . Это означает, что в рассмотренном множестве треугольников не существует ни одного треугольника с искомыми сторонами (4) .
Теперь рассмотрим множество . Обозначим (2n+1) как «m », тогда во множестве получим прямоугольные треугольники, описываемые тождеством (6) . Если мы сможем построить прямоугольный треугольник X, Y, Z со сторонами (7) , где , то мы опровергнем утверждение Ферма, т.к. по теореме Пифагора и (p, q и k) - натуральные числа. Надо, чтобы . Рассматривая последнее равенство заметим, что «p » не может быть натуральным числом ни при каких значениях «a и b », , если . Значит и в этом множестве треугольников не существует ни одного треугольника с искомыми сторонами (7) .

Однако из вышесказанного видно, что все доказательство сводится к анализу числа , где «» при любых натуральных «a и b » не будет натуральным числом в степени «m/2 ». Или же (8) при тех же условиях не будет натуральным числом в степени «m». Из доказательства видно, что «генераторами» тождества (6) являются числа «» из ряда Но, анализируя (8) , можно подставить вместо «» число . Так как есть четное число, (см.Примечание), то - натуральное число. После подстановки его в (8) получим , то есть натуральные числа в степени «m». Совершив вышеуказанную подстановку в тождество (6) , и, обозначив через , получим следующее тождество: . Мы получили множество прямоугольных треугольников со сторонами . Если (k,q, p) - натуральные числа в нечетной степени, т.е. где r - любое нечетное число, а . Чтобы опровергнуть Ферма нужно, чтобы: В последнем равенстве при любых натуральных a и b , - числа натуральные, но первые два равенства невозможны, так как, если «m и r » любые нечетные числа, то - иррациональные числа, а числа в скобках - числа натуральные. Если же (k,q, p) - натуральные числа в четной степени, т.е. , то мы получим следующие равенства (5) . В данном варианте последнее равенство невозможно, т.к. извлекая корень m степени из обеих частей равенства получим , т.е. в скобках иррациональное число, а - натуральное. Это значит, что и в этом множестве не найдено «нужного» треугольника. А это значит, что для любых нечетных «m » утверждение Ферма верно, а значит, верно, для всех простых показателей «m ≥ 3».

Остается найти доказательство теоремы для четных показателей. Из (5) следует, что, если в каноническом разложении четного показателя степени есть нечетное простое число, то утверждение Ферма для этой степени верно. Очевидно, что этому условию отвечают все четные числа, кроме числа «4 » и чисел кратных четырем, т.е. 8, 16, 32, 64 … и т.д. В разложении этих чисел есть только простое число 2 . Поэтому вышеприведенное доказательство не дает ответа для этих степеней.

Значит остается доказать теорему для «n = 4 ». Можно предположить, что у Ферма было общее доказательство, но не полное. Может быть, поэтому он и не записал свое доказательство. И только через несколько лет, создав свой метод «бесконечного или неопределенного спуска», он доказал, что не существует прямоугольного треугольника с целочисленными сторонами, у которого площадь равнялась бы квадрату натурального числа. После этого доказательство теоремы для «n = 4 » не составило труда. Это доказательство Ферма записал. И теорема оказалась доказанной полностью.

Теги: теорема Ферма, краткое доказательство

Что премию Абеля в 2016 году получит Эндрю Уайлз за доказательство гипотезы Таниямы-Шимуры для полустабильных эллиптических кривых и следующее из этой гипотезы доказательство великой теоремы Ферма. В настоящее время премия составляет 6 миллионов норвежских крон, то есть примерно 50 миллионов рублей. По словам Уайлса, присуждение премии стало для него «полной неожиданностью».

Теорема Ферма, доказанная более 20 лет назад, до сих пор привлекает внимание математиков. Отчасти, это связано с ее формулировкой, которая понятна даже школьнику: доказать, что для натуральных n>2 не существует таких троек целых ненулевых чисел, что a n + b n = c n . Это выражение Пьер Ферма записал на полях «Арифметики» Диофанта, снабдив замечательной подписью «Я нашёл этому поистине чудесное доказательство [этого утверждения], но поля книги слишком узки для него». В отличие от большинства математических баек, эта - настоящая.

Вручение премии - прекрасный повод вспомнить десять занимательных историй, связанных с теоремой Ферма.

1.

До того, как Эндрю Уайлз доказал теорему Ферма, ее правильнее было называть гипотезой, то есть гипотезой Ферма. Дело в том, что теорема - это по определению уже доказанное утверждение. Однако, почему-то к этому утверждению приклеилось именно такое название.

2.

Если в теореме Ферма положить n = 2, то у такого уравнения существует бесконечно много решений. Эти решения называются «пифагоровы тройки». Такое название они получили потому, что им соответствуют прямоугольные треугольники, стороны которых выражаются именно такими наборами чисел. Генерировать пифагоровы тройки можно с помощью таких вот трех формул (m 2 - n 2 , 2mn, m 2 + n 2). В эти формулы надо подставлять разные значения m и n, и в результате будут получаться нужные нам тройки. Главное тут, впрочем, убедиться, что полученные числа будут больше нуля - длины не могут выражаться отрицательными числами.

Кстати, легко заметить, что если все числа в пифагоровой тройке умножить на некоторое ненулевое, получится новая пифагорова тройка. Поэтому разумно изучать тройки, в которых у трех чисел в совокупности нет общего делителя. Схема, которую мы описали, позволяет получить все такие тройки - это уже совсем не простой результат.

3.

1 марта на 1847 года заседании Парижской академии наук сразу два математика - Габриэль Ламе и Огюстен Коши - объявили, что находятся на пороге доказательства замечательной теоремы. Они устроили гонку, публикуя кусочки доказательства. Большинство академиков болело за Ламе, поскольку Коши был самодовольным, нетерпимым к чужому мнению религиозным фанатиком (и, разумеется, совершенно блестящим математиком по совместительству). Однако, матчу не суждено было завершиться - через своего друга Жозефа Лиувилля немецкий математик Эрнст Куммер сообщил академикам, что в доказательствах Коши и Ламе есть одна и та же ошибка.

В школе доказывается, что разложение числа на простые множители единственно. Оба математика полагали, что если смотреть на разложение целых чисел уже в комплексном случае, то это свойство - единственность - сохранится. Однако это не так.

Примечательно, что если рассматривать только m + i n, то разложение единственно. Такие числа называются гауссовыми. Но для работы Ламе и Коши потребовалось разложение на множители в циклотомических полях . Это, например, числа, в которых m и n - рациональные, а i удовлетворяет свойству i^k = 1.

4.

Теорема Ферма для n = 3 имеет понятный геометрический смысл. Представим себе, что у нас есть много маленьких кубиков. Пусть мы собрали из них два больших куба. В этом случае, понятное дело, стороны будут целыми числами. Можно ли найти два таких больших куба, что, разобрав их на составляющие мелкие кубы, мы бы могли собрать из них один большой куб? Теорема Ферма говорит, что так сделать никогда нельзя. Забавно, что если задать тот же вопрос для трех кубов, то ответ утвердительный. Например, есть вот такая четверка чисел, открытая замечательным математиком Шринивасом Рамануджаном:

3 3 + 4 3 + 5 3 = 6 3

5.

В истории с теоремой Ферма отметился Леонард Эйлер. Доказать утверждение (или даже подступиться к доказательству) у него толком не получилось, однако он сформулировал гипотезу о том, что уравнение

x 4 + y 4 + z 4 = u 4

не имеет решения в целых числах. Все попытки найти решение такого уравнения в лоб оказались безрезультатны. Только в 1988 году Науму Элкиесу из Гарварда удалось найти контрпример. Он выглядит вот так:

2 682 440 4 + 15 365 639 4 + 18 796 760 4 = 20 615 673 4 .

Обычно эту формулу вспоминают в контексте численного эксперимента. Как правило, в математике это выглядит так: есть некоторая формула. Математик проверяет эту формулу в простых случаях, убеждается в истинности и формулирует некоторую гипотезу. Затем он (хотя чаще какой-нибудь его аспирант или студент) пишет программу для того, чтобы проверить, что формула верна для достаточно больших чисел, которые руками не посчитать (про один такой эксперимент с простыми числами мы ). Это не доказательство, конечно, но отличный повод заявить о гипотезе. Все эти построения базируются на разумном предположении, что, если к некоторой разумной формуле есть контрпример, то мы найдем его достаточно быстро.

Гипотеза Эйлера напоминает, что жизнь гораздо разнообразнее наших фантазий: первый контрпример может быть сколь угодно большим.

6.

На самом деле, конечно, Эндрю Уайлз не пытался доказать теорему Ферма - он решал более сложную задачу под названием гипотеза Таниямы-Шимуры. В математике есть два замечательных класса объектов. Первый называется модулярными формами и представляет собой по сути функции на пространстве Лобачевского. Эти функции не меняются при движениях этой самой плоскости. Второй называется «эллиптическими кривыми и представляет собой кривые, задаваемые уравнением третьей степени на комплексной плоскости. Оба объекта очень популярны в теории чисел.

В 50-х годах прошлого века два талантливых математика Ютака Танияма и Горо Шимура познакомились в библиотеке Токийского университета. В то время особой математики в университете не было: она просто не успела восстановиться после войны. В результате ученые занимались по старым учебникам и разбирали на семинарах задачи, которые в Европе и США считались решенными и не особенно актуальными. Именно Танияма и Шимура обнаружили, что между модулярными формами и эллиптическими функциями есть некое соответствие.

Свою гипотезу они проверили на некоторых простых классах кривых. Оказалось, что она работает. Вот они и предположили, что эта связь есть всегда. Так появилась гипотеза Таниямы-Шимуры, а спустя три года Танияма покончил с собой. В 1984 году немецкий математик Герхард Фрей показал, что если теорема Ферма неверна, то, следовательно, неверна гипотеза Таниямы-Шимуры. Из этого вытекало, что доказавший эту гипотезу, докажет и теорему. Именно это и сделал - правда не совсем в общем виде - Уайлз.

7.

На доказательство гипотезы Уайлз потратил восемь лет. И во время проверки рецензенты нашли в ней ошибку, которая «убивала» большую часть доказательства, сводя на нет все годы работы. Один из рецензентов по имени Ричард Тейлор взялся заделать вместе с Уайлзом эту дырку. Пока они работали, появилось сообщение, что Элкиес, тот самый, который нашел контрпример к гипотезе Эйлера, нашел и контрпример и к теореме Ферма (позже оказалось, что это была первоапрельская шутка). Уайлз впал в депрессию и не хотел продолжать - дырка в доказательстве никак не закрывалась. Тейлор уговорил Уайлза побороться еще месяц.

Случилось чудо и к концу лета математикам удалось сделать прорыв - так на свет появились работы «Модулярные эллиптические кривые и великая теорема Ферма» Эндрю Уайлза (pdf) и «Теоретико-кольцевые свойства некоторых алгебр Гекке» Ричарда Тейлора и Эндрю Уайлза. Это было уже правильное доказательство. Опубликовано оно было в 1995 году.

8.

В 1908 году в Дармштадте скончался математик Пауль Вольфскель. После себя он оставил завещание, в котором давал математическому сообществу 99 лет, чтобы найти доказательство великой теоремы Ферма. Автор доказательства должен был получить 100 тысяч марок (автор контрпримера, кстати, не получил бы ничего). Согласно распространенной легенде, сделать такой подарок математикам Вольфскеля побудила любовь. Вот как описывает легенду Саймон Сингх в своей книге «Великая теорема Ферма »:

История начинается с того, что Вольфскель увлекся красивой женщиной, личность которой так никогда и не была установлена. К великому сожалению для Вольфскеля, загадочная женщина отвергла его. Он впал в такое глубокое отчаяние, что решил совершить самоубийство. Вольфскель был человеком страстным, но не импульсивным, и поэтому принялся во всех подробностях разрабатывать свою смерть. Он назначил дату своего самоубийства и решил выстрелить себе в голову с первым ударом часов ровно в полночь. За оставшиеся дни Вольфскель решил привести в порядок свои дела, которые шли великолепно, а в последний день составил завещание и написал письма близким друзьям и родственникам.

Вольфскель трудился с таким усердием, что закончил все свои дела до полуночи и, чтобы как-нибудь заполнить оставшиеся часы, отправился в библиотеку, где стал просматривать математические журналы. Вскоре ему на глаза попалась классическая статья Куммера, в которой тот объяснял, почему потерпели неудачу Коши и Ламе. Работа Куммера принадлежала к числу самых значительных математических публикаций своего века и как нельзя лучше подходила для чтения математику, задумавшему совершить самоубийство. Вольфскель внимательно, строка за строкой, проследил за выкладками Куммера. Неожиданно Вольфскелю показалось, что он обнаружил пробел: автор сделал некое предположение и не обосновал этот шаг в своих рассуждениях. Вольфскель заинтересовался, действительно ли ему удалось обнаружить серьезный пробел, или сделанное Куммером предположение было обоснованным. Если был обнаружен пробел, то имелся шанс, что Великую теорему Ферма удастся доказать гораздо проще, чем полагали многие.

Вольфскель сел за стол, тщательно проанализировал «ущербную» часть рассуждений Куммера и принялся набрасывать минидоказательство, которое должно было либо подкрепить работу Куммера, либо продемонстрировать ошибочность принятого им предположения и, как следствие, опровергнуть все его доводы. К рассвету Вольфскель закончил свои вычисления. Плохие (с точки зрения математики) новости состояли в том, что доказательство Куммера удалось исцелить, и Великая теорема Ферма по-прежнему осталась недоступной. Но были и хорошие новости: время, назначенное для самоубийства, миновало, а Вольфскель был так горд тем, что ему удалось обнаружить и восполнить пробел в работе великого Эрнеста Куммера, что его отчаяние и печаль развеялись сами собой. Математика вернула ему жажду жизни.

Впрочем, есть и альтернативная версия. Согласно ей, Вольфскель занялся математикой (и, собственно, теоремой Ферма) из-за прогрессирующего рассеянного склероза, который помешал заниматься ему любимым делом - быть врачом. А деньги математикам он оставил, чтобы не оставлять своей жене, которую к концу жизни просто ненавидел.

9.

Попытки доказать теорему Ферма элементарными методами привели к появлению целого класса странных людей под названием «ферматисты». Они занимались тем, что производили огромное количество доказательств и совершенно не отчаивались, когда в этих доказательствах находили ошибку.

На мехмате МГУ был легендарный персонаж по фамилии Добрецов. Он собирал справки из разных ведомств и, пользуясь ими, проникал на мехмат. Делалось это исключительно для того, чтобы найти жертву. Как-то ему попался молодой аспирант (будущий академик Новиков). Он, по наивности своей, принялся внимательно изучать стопку бумаг, которую Добрецов подсунул ему со словами, мол, вот доказательство. После очередного «вот ошибка...» Добрецов забрал стопку, запихнул ее в портфель. Из второго портфеля (да, он ходил по мехмату с двумя портфелями) он достал вторую стопку, вздохнул и сказал: «Ну тогда посмотрим вариант 7 Б».

Кстати, большинство таких доказательств начинается с фразы «Перенесем одно из слагаемых в правую часть равенства и разложим на множители».

10.


Рассказ о теореме будет неполон без замечательного фильма «Математик и черт».

Поправка

В разделе 7 этой статьи первоначально говорилось, что Наум Элкиес нашел контрпример к теореме Ферма, который впоследствии оказался ошибочным. Это неверно: сообщение о контрпримере было первоапрельской шуткой. Приносим извинения за неточность.


Андрей Коняев

Интерес к математике обозначился у Ферма как-то неожиданно и в достаточно зрелом возрасте. В 1629 г. в его руки попадает латинский перевод работы Паппа, содержащий краткую сводку результатов Аполлония о свойствах конических сечений. Ферма, полиглот, знаток права и античной филологии, вдруг задается целью полностью восстановить ход рассуждений знаменитого ученого. С таким же успехом современный адвокат может попытаться самостоятельно воспроизвести все доказательства по монографии из проблем, скажем, алгебраической топологии. Однако, немыслимое предприятие увенчивается успехом. Более того, вникая в геометрические построения древних, он совершает удивительное открытие: для нахождения максимумов и минимумов площадей фигур не нужны хитроумные чертежи. Всегда можно составить и решить некое простое алгебраическое уравнение, корни которого определяют экстремум. Он придумал алгоритм, который станет основой дифференциального исчисления.

Он быстро продвинулся дальше. Он нашел достаточные условия существования максимумов, научился определять точки перегиба, провел касательные ко всем известным кривым второго и третьего порядка. Еще несколько лет, и он находит новый чисто алгебраический метод нахождения квадратур для парабол и гипербол произвольного порядка (то есть интегралов от функций вида y p = Cx q и y p x q = С ), вычисляет площади, объемы, моменты инерции тел вращения. Это был настоящий прорыв. Чувствуя это, Ферма начинает искать общения с математическими авторитетами того времени. Он уверен в себе и жаждет признания.

В 1636 г. он пишет первое письмо Его преподобию Марену Мерсенну: ”Святой отец! Я Вам чрезвычайно признателен за честь, которую Вы мне оказали, подав надежду на то, что мы сможем беседовать письменно; ...Я буду очень рад узнать от Вас о всех новых трактатах и книгах по Математике, которые появилась за последние пять-шесть лет. ...Я нашел также много аналитических методов для различных проблем, как числовых, так и геометрических, для решения которых анализ Виета недостаточен. Всем этим я поделюсь с Вами, когда Вы захотите, и притом без всякого высокомерия, от которого я более свободен и более далек, чем любой другой человек на свете.”

Кто такой отец Мерсенн? Это францисканский монах, ученый скромных дарований и замечательный организатор, в течении 30 лет возглавлявший парижский математический кружок, который стал подлинным центром французской науки. В последствии кружок Мерсенна указом Людовика XIV будет преобразован в Парижскую академию наук. Мерсенн неустанно вел огромную переписку, и его келья в монастыре ордена минимов на Королевской площади была своего рода “почтамтом для всех ученых Европы, начиная от Галилея и кончая Гоббсом”. Переписка заменяла тогда научные журналы, которые появились значительно позже. Сборища у Мерсенна происходили еженедельно. Ядро кружка составляли самые блестящие естествоиспытатели того времен: Робервиль, Паскаль-отец, Дезарг, Мидорж, Арди и конечно же, знаменитый и повсеместно признанный Декарт. Рене дю Перрон Декарт (Картезий), дворянская мантия, два родовых поместья, основоположник картезианства, “отец” аналитической геометрии, один из основателей новой математики, а так же друг и товарищ Мерсенна по иезуитскому колледжу. Этот замечательный человек станет кошмаром для Ферма.

Мерсенн счел результаты Ферма достаточно интересными, чтобы ввести провинциала в свой элитный клуб. Ферма тут же завязывает переписку со многими членами кружка и буквально засыпает письмами самого Мерсенна. Кроме того, он отсылает на суд ученых мужей законченные рукописи: “Введение к плоским и телесным местам”, а год спустя - “Способ отыскания максимумов и минимумов” и “Ответы на вопросы Б. Кавальери”. То, что излагал Ферма, была абсолютная новь, однако сенсация не состоялась. Современники не содрогнулись. Они мало, что поняли, но зато нашли однозначные указание на то, что идею алгоритма максимизации Ферма заимствовал из трактата Иоханнеса Кеплера с забавным названием “Новая стереометрия винных бочек”. Действительно, в рассуждения Кеплера встречаются фразы типа “Объем фигуры наибольший, если по обе стороны от места наибольшего значения убывание сначала нечувствительно”. Но идея малости приращения функции вблизи экстремума вовсе не носилась в воздухе. Лучшие аналитические умы того времени были не готовы к манипуляциям с малыми величинами. Дело в том, что в то время алгебра считалась разновидностью арифметики, то есть математикой второго сорта, примитивным подручным средством, разработанным для нужд низменной практики (“хорошо считают только торговцы”). Традиция предписывала придерживаться сугубо геометрических методов доказательств, восходящих к античной математике. Ферма первый понял, что бесконечно малые величины можно складывать и сокращать, но довольно затруднительно изображать в виде отрезков.

Понадобилось почти столетие, чтобы Жан д’Аламбер в знаменитой “Энциклопедии” признал: “Ферма был изобретателем новых исчислений. Именно у него мы встречаем первое приложение дифференциалов для нахождения касательных”. В конце XVIII века еще более определенно выскажется Жозеф Луи граф де Лагранж: “Но геометры - современники Ферма - не поняли этого нового рода исчисления. Они усмотрели лишь частные случаи. И это изобретение, которое появилось незадолго перед “Геометрией” Декарта, оставалось бесплодным в течении сорока лет”. Лагранж имеет в виду 1674 г., когда вышли в свет “Лекции” Исаака Барроу, подробно освещавшие метод Ферма.

Кроме всего прочего быстро обнаружилось, что Ферма более склонен формулировать новые проблемы, нежели, чем смиренно решать задачи, предложенные метрами. В эпоху дуэлей обмен задачами между учеными мужами был общепринят, как форма выяснения проблем, связанных с субординацией. Однако Ферма явно не знает меры. Каждое его письмо - это вызов, содержащий десятки сложных нерешенных задач, причем на самые неожиданные темы. Вот образчик его стиля (адресовано Френиклю де Бесси): “Item, каков наименьший квадрат, который при уменьшении на 109 и прибавлении единицы даст квадрат? Если Вы не пришлете мне общего решения, то пришлите частное для этих двух чисел, которые я выбрал небольшими, чтобы Вас не очень затруднить. После того как Я получу от Вас ответ, я предложу Вам некоторые другие вещи. Ясно без особых оговорок, что в моем предложении требуется найти целые числа, поскольку в случае дробных чисел самый незначительный арифметик смог бы прийти к цели.” Ферма часто повторялся, формулируя одни и те же вопросы по несколько раз, и откровенно блефовал, утверждая, что располагает необыкновенно изящным решением предложенной задачи. Не обходилось и без прямых ошибок. Некоторые из них были замечены современниками, а кое какие коварные утверждения вводили в заблуждение читателей в течении столетий.

Кружок Мерсенна прореагировал адекватно. Лишь Робервиль, единственный член кружка, имевший проблемы с происхождением, сохраняет дружеский тон писем. Добрый пастырь отец Мерсенн пытался вразумить “тулузского нахала”. Но Ферма не намерен оправдываться: ”Преподобный отец! Вы мне пишете, что постановка моих невозможных проблем рассердила и охладила господ Сен-Мартена и Френикля и что это послужило причиной прекращения их писем. Однако я хочу возразить им, что то, что кажется сначала невозможным, на самом деле не является таковым и что есть много проблем, о которых, как сказал Архимед... ” и т.д..

Однако Ферма лукавит. Именно Френиклю он послал задачу о нахождении прямоугольного треугольника с целочисленными сторонами, площадь которого равна квадрату целого числа. Послал, хотя знал, что задача заведомо не имеет решения.

Самую враждебную позицию по отношению к Ферма занял Декарт. В его письме Мерсенну от 1938 г. читаем: “так как я узнал, что это тот самый человек который перед тем пытался опровергнуть мою “Диоптрику”, и так как Вы сообщили мне, что он послал это после того, как прочел мою “Геометрию” и в удивлении, что я не нашел ту же вещь, т. е. (как имею основание его истолковать) послал это с целью вступить в соперничество и показать, что в этом он знает больше, чем я, и так как еще из ваших писем я узнал, что за ним числится репутация весьма сведущего геометра, то я считаю себя обязанным ему ответить.” Свой ответ Декарт в последствии торжественно обозначит как “малый процесс Математики против г. Ферма”.

Легко понять, что привело в ярость именитого ученого. Во-первых, в рассуждениях Ферма постоянно фигурируют координатные оси и представление чисел отрезками - прием, который Декарт всесторонне развивает в своей только что изданной “Геометрии”. Ферма приходит к идее замены чертежа вычислениями совершенно самостоятельно, в чем-то он даже более последователен, чем Декарт. Во-вторых, Ферма блестяще демонстрирует эффективность своего метода нахождения минимумов на примере задачи о кратчайшем пути светового луча, уточняя и дополняя Декарта с его “Диоптрикой”.

Заслуги Декарта как мыслителя и новатора огромны, но откроем современную “Математическую энциклопедию” и просмотрим список терминов связанных с его именем: “Декартовы координаты” (Лейбниц, 1692) , “Декартов лист”, “Декарта овалы ”. Ни одно из его рассуждений не вошло в историю как “Теорема Декарта”. Декарт в первую очередь идеолог: он основатель философской школы, он формирует понятия, совершенствует систему буквенных обозначений, но в его творческом наследии мало новых конкретных приемов. В противоположность ему Пьер Ферма мало пишет, но по любому поводу может придумать массу остроумных математических трюков (см. там же “Теорема Ферма”, ”Принцип Ферма”, ”Метод бесконечного спуска Ферма”). Вероятно, они вполне справедливо завидовали друг другу. Столкновение было неизбежно. При иезуитском посредничестве Мерсенна разгорается война, длившаяся два года. Впрочем, Мерсенн и здесь оказался прав перед историей: яростная схватка двух титанов, их напряженная, мягко говоря, полемика способствовала осмыслению ключевых понятий математического анализа.

Первым теряет интерес к дискуссии Ферма. По-видимому, он напрямую объяснился с Декартом и больше никогда не задевал соперника. В одной из своих последних работ “Синтез для рефракции”, рукопись которой он послал де ла Шамбру, Ферма через слово поминает “ученейшего Декарта” и всячески подчеркивает его приоритет в вопросах оптики. Между тем именно эта рукопись содержала описание знаменитого “принципа Ферма”, который обеспечивает исчерпывающее объяснение законов отражения и преломления света. Реверансы в сторону Декарта в работе такого уровня были совершенно излишни.

Что же произошло? Почему Ферма, отложив в сторону самолюбие, пошел на примирение? Читая письма Ферма тех лет (1638 - 1640 гг.), можно предположить самое простое: в этот период его научные интересы резко изменились. Он забрасывает модную циклоиду, перестает интересоваться касательными и площадями, и на долгие 20 лет забывает о своем методе нахождения максимума. Имея огромные заслуги в математике непрерывного, Ферма целиком погружается в математику дискретного, оставив опостылевшие геометрические чертежи своим оппонентам. Его новой страстью становятся числа. Собственно говоря, вся “Теория чисел”, как самостоятельная математическая дисциплина, своим появлением на свет целиком обязана жизни и творчеству Ферма.

<…> После смерти Ферма его сын Самюэль издал в 1670 г. принадлежащий отцу экземпляр “Арифметики” под названием “Шесть книг арифметики александрийца Диофанта с комментариями Л. Г. Баше и замечаниями П. де Ферма, тулузского сенатора”. В книгу были включены также некоторые письма Декарта и полный текст сочинения Жака де Бильи “Новое открытие в искусстве анализа”, написанное на основе писем Ферма. Издание имело невероятный успех. Перед изумленными специалистами открылся невиданный яркий мир. Неожиданность, а главное доступность, демократичность теоретико-числовых результатов Ферма породили массу подражаний. В то время мало кто понимал как вычисляется площадь параболы, но каждый школяр мог осознать формулировку Великой теоремы Ферма. Началась настоящая охота за неизвестными и утерянными письмами ученого. До конца XVII в. было издано и переиздано каждое найденное его слово. Но бурная история развития идей Ферма только начиналась.