Что входит в состав попутного нефтяного газа. Попутный нефтяной газ

Попутный нефтяной газ

Попутный нефтяной газ (ПНГ ) - смесь различных газообразных углеводородов , растворенных в нефти ; они выделяются в процессе добычи и перегонки (это так называемые попутные газы , главным образом состоят из пропана и изомеров бутана). К нефтяным газам также относят газы крекинга нефти, состоящие из предельных и непредельных (этилена , ацетилена) углеводородов. Нефтяные газы применяют как топливо и для получения различных химических веществ. Из нефтяных газов путем химической переработки получают пропилен , бутилены , бутадиен и др., которые используют в производстве пластмасс и каучуков .

Состав

Попутный нефтяной газ - смесь газов, выделяющаяся из углеводородов любого фазового состояния, состоящая из метана , этана , пропана , бутана и изобутана , содержащая растворенные в ней высокомолекулярные жидкости (от пентанов и выше по росту гомологического ряда) и различного состава и фазового состояния примеси.

Приблизительный состав ПНГ

Получение

ПНГ является ценным углеводородным компонентом, выделяющимся из добываемых, транспортируемых и перерабатываемых содержащих углеводороды минералов на всех стадиях инвестиционного цикла жизни до реализации готовых продуктов конечному потребителю. Таким образом, особенностью происхождения нефтяного попутного газа является то, что он выделяется на любой из стадий от разведки и добычи до конечной реализации, из нефти, газа, (другие источники опущены) и в процессе их переработки из любого неполного продуктового состояния до любого из многочисленных конечных продуктов.

Специфической особенностью ПНГ является обычно незначительный расход получаемого газа, от 100 до 5000 нм³/час . Содержание углеводородов С З + может изменяться в диапазоне от 100 до 600 г/м³ . При этом состав и количество ПНГ не является величиной постоянной. Возможны как сезонные, так и разовые колебания (нормальное изменение значений до 15 %).

Газ первой ступени сепарации, как правило, отправляется непосредственно на газоперерабатывающий завод. Значительные трудности возникают при попытках использовать газ с давлением менее 5 бар . До недавнего времени такой газ в подавляющем большинстве случаев просто сжигался на факелах, однако, сейчас ввиду изменений политики государства в области утилизации ПНГ и ряда других факторов ситуация значительно изменяется. В соответствии с Постановлением Правительства России от 8 января 2009 г. № 7 «О мерах по стимулированию сокращения загрязнения атмосферного воздуха продуктами сжигания попутного нефтяного газа на факельных установках» был установлен целевой показатель сжигания попутного нефтяного газа в размере не более 5 процентов от объема добытого попутного нефтяного газа. В настоящий момент объемы добываемого, утилизируемого и сжигаемого ПНГ невозможно оценить в связи с отсутствием на многих месторождениях узлов учета газа. Но по приблизительным оценкам это порядка 25 млрд м³ .

Пути утилизации

Основными путями утилизации ПНГ являются переработка на ГПЗ, генерация электроэнергии, сжигание на собственные нужды, закачка обратно в пласт для интенсификации нефтеотдачи (поддержание пластового давления), закачка в добывающие скважины - использование «газлифта».

Технология утилизации ПНГ

Газовый факел в западносибирской тайге в начале 1980-х годов

Основная проблема при утилизации попутного газа заключается в высоком содержании тяжелых углеводородов . На сегодняшний день существует несколько технологий, повышающих качество ПНГ за счет удаления значительной части тяжелых углеводородов. Одна из них - подготовка ПНГ с помощью мембранных установок. При применении мембран метановое число газа значительно повышается, низшая теплотворная способность (LHV), тепловой эквивалент и температура точки росы (как по углеводородам, так и по воде) снижаются.

Мембранные углеводородные установки позволяют значительно снизить концентрацию сероводорода и диоксида углерода в потоке газа, что позволяет использовать их для очистки газа от кислых компонентов.

Конструкция

Схема распределния газовых потоков в мембранном модуле

По своей конструкции углеводородная мембрана представляет собой цилиндрический блок с выходами пермеата, продуктового газа и входа ПНГ. Внутри блока находится трубчатая структура селективного материала, который пропускает только определенный вид молекул. Общая схема потока внутри картриджа показана на рисунке.

Принцип работы

Конфигурация установки в каждом конкретном случае определяется специально, так как исходный состав ПНГ может сильно разниться.

Схема установки в принципиальной конфигурации:

Напорная схема подготовки ПНГ

Вакуумная схема подготовки ПНГ

  • Предварительный сепаратор для очистки от грубых примесей, крупной капельной влаги и нефти,
  • Ресивер на входе,
  • Компрессор,
  • Холодильник для доохлаждения газа до температуры от +10 до +20 °C,
  • Фильтр тонкой очистки газа от масла и парафинистых соединений,
  • Углеводородный мембранный блок ,
  • КИПиА,
  • Система управления, включая поточный анализ,
  • Система утилизации конденсата (из сепараторов),
  • Система утилизации пермеата,
  • Контейнерная поставка.

Контейнер должен быть изготовлен в соответствии с требованиями пожаро- взровобезопасности в нефтяной и газовой промышленности.

Существует две схемы подготовки ПНГ: напорная и вакуумная.

Переработка попутного нефтяного газа (ПНГ) - направление, которому сегодня уделяется повышенное внимание. Этому способствует ряд обстоятельств, прежде всего рост добычи нефти и ужесточение экологических норм. По данным 2002 г., всего в Российской Федерации извлечено из недр 34,2 млрд. м3 ПНГ, из них потреблено 28,2 млрд. м3. Таким образом, уровень использования ПНГ составил 82,5%, при этом в факелах сгорело около 6 млрд. м3 (17,5%).

В том же 2002 г. на газоперерабатывающих заводах России было переработано 12,3 млрд. м3 ПНГ (43,6% «потребленного» газа), из них в Тюменской области, основном регионе производства ПНГ - 10,3 млрд. м3. На промысловые нужды (подогрев нефти, отопление вахтовых поселков и т.п.) с учетом технологических потерь было израсходовано 4,8 млрд. м3 (17,1%), еще 11,1 млрд. м3 (39,3%) использовано для выработки электроэнергии на ГРЭС. Дальнейший рост утилизации ПНГ до заложенных в лицензионных соглашениях 95% наталкивается на ряд трудностей. Прежде всего, при существующих ценовых «вилках» 1 продажа газа на ГПЗ с небольшого месторождения (1-1,5 млн. т нефти в год) рентабельна, если перерабатывающий завод находится на расстоянии не более 60-80 км.
Однако вновь вводимые нефтяные месторождения удалены от ГПЗ на 150-200 км. В этом случае учет всех элементов затрат выводит себестоимость попутного газа на уровень, при котором вариант утилизации попутного газа на ГПЗ для многих недропользователей неэффективен и ими ищутся варианты переработки ПНГ непосредственно на нефтепромыслах.

Основные решения по утилизации ПНГ, которыми сегодня могут воспользоваться нефтедобывающие компании таковы:

1. Переработка ПНГ средствами нефтехимии.
2. «Малая энергетика» на базе ПНГ.
3. Закачка ПНГ и смесей на его основе в пласт для повышения нефтеотдачи.
4. Переработка газа на синтетическое топливо (технологии СЖТ/GTL).
5. Сжижение подготовленного ПНГ.

Как видно по приведенным ранее цифрам, в РФ в «глобальных масштабах» из этих направлений развиваются лишь два: потребление ПНГ в качестве топлива с целью выработки электроэнергии и как сырья для нефтехимии (получение сухого отбензиненного газа, газового бензина, ШФЛУ и сжиженного газа для бытовых нужд).
Между тем, новые технологии и оборудование позволяют реализовать многие процессы непосредственно на промыслах, что полностью устранит или существенно снизит потребность в дорогостоящей сетевой инфраструктуре, вовлечет в переработку неиспользуемые объемы ПНГ, улучшит экономическую эффективность нефтедобычи.
Согласно проведенному анализу к перспективным направлениям промысловой утилизации ПНГ сегодня относятся:

Микротурбинные или газопоршневые установки, покрывающие потребность нефтепромыслов в электрической и тепловой энергии.
. малогабаритные установки сепарации для получения товарной продукции (топливного метана на собственные нужды, ШФЛУ, газового бензина и ПБТ).
. комплексы (установки) конвертации ПНГ в метанол и синтетические жидкие углеводороды (автомобильный бензин, дизтопливо и т.п.).

Выработка попутного нефтяного газа
Доведение добытой сырой нефти до товарных кондиций происходит в установках комплексной подготовки нефти (УКПН). В УКПН, помимо обезвоживания, сероочистки и обессоливания нефти, осуществляется ее стабилизация, то есть отделение в специальных стабилизационных колоннах легких фракций (т.е. ПНГ и газа выветривания). С УКПН стабилизированная нефть требуемого качества подается через коммерческие узлы учета нефти в магистральные нефтепроводы. Выделенный ПНГ при наличии специального газопровода доставляется потребителям, а при отсутствии «трубы» сжигается, используется на собственные нужды или перерабатывается. Отметим, что ПНГ отличается от природного газа, состоящего на 70-99% из метана, высоким содержанием тяжелых углеводородов, что и делает его ценным сырьем для нефтехимических производств.

Состав ПНГ различных месторождений Западной Сибири

Месторождение

Состав газа, % масс.
СН 4 С 2 Н 6 С 3 Н 8 i-С 4 Н 10 n-С 4 Н 10 i-С 5 Н 12 n-С 5 Н 12 СO 2 N 2
Самотлорское 60,64 4,13 13,05 4,04 8,6 2,52 2,65 0,59 1,48
Варьеганское 59,33 8,31 13,51 4,05 6,65 2,2 1,8 0,69 1,51
Аганское 46,94 6,89 17,37 4,47 10,84 3,36 3,88 0,5 1,53
Советское 51,89 5,29 15,57 5,02 10,33 2,99 3,26 1,02 1,53

ПРИМЕР: стоимость УКПН зависит от пластового содержания ПНГ, а также количества попутных водяных паров, сероводорода и т.п. Ориентировочная оценка стоимости установки на 100-150 тыс. т. в год товарной нефти - $20-40 млн.

Фракционная («нехимическая») переработка ПНГ

В результате переработки ПНГ на газоперерабатывающих установках (заводах) получают «сухой» газ, сходный с природным, и продукт под названием «широкая фракция легких углеводородов» (ШФЛУ). При более глубокой переработке номенклатура продуктов расширяется - газы («сухой» газ, этан), сжиженные газы (СУГ, ПБТ, пропан, бутан и т.д.) и стабильный газовый бензин (СГБ). Все они, включая ШФЛУ, находят спрос, как на внутреннем, так и на внешнем рынках2.

Доставка продуктов переработки ПНГ до потребителя чаще всего осуществляется по трубопроводу. Необходимо помнить, что транспортировка трубопроводом довольно опасна. Как и ПНГ, ШФЛУ, СУГ и ПБТ тяжелее воздуха, поэтому при негерметичности трубы пары будут накапливаться в приземном слое с образованием взрывоопасного облака. Взрыв в облаке распыленного горючего вещества (т.н. «объемный») характеризуется повышенной разрушительной силой3. Альтернативные варианты транспортировки ШФЛУ, СУГ и ПБТ не представляют технических проблем. Сжиженные газы перевозится в ж/д цистернах и т.н. «универсальных контейнерах» под давлением до 16 атм. железнодорожным, речным (водным) и автомобильным транспортом.
При определении экономического эффекта от переработки ПНГ следует иметь в виду, что на российских производителей СУГ накладывается т.н. «балансовое задание» по поставкам СУГ для бытовых потребителей по «балансовым ценам» (по данным АК «СИБУР» - это 1,7 тыс. руб./т). «Задания» на практике достигают 30% от объема производства, что ведет к росту стоимости СУГ для коммерческих пользователей (4,5-27 тыс. руб./т в зависимости от региона). Министерство промышленности и энергетики РФ обещает отменить «балансовые задания» в конце 2006 года и это может вызвать снижение цен на рынке СУГ. Впрочем, производители сжиженного газа убеждены, что окончательное решение будет принято не ранее 2008 г. Из-за стабильно высоких цен на СУГ в Европе выгоднее перерабатывать ПНГ и ШФЛУ в СУГ. В России же более прибыльным может оказаться получение метанола или БТК (смесь бензола, толуола и ксилола). В дальнейшем смесь БТК может быть переработана деалкилированием в бензол, который является товарным продуктом, пользующимся высоким спросом.

ПРИМЕР: Комплекс по выработке ШФЛУ из ПНГ по схеме низкотемпературной конденсации запущен на ОАО «Губкинский ГПК» в 2005 г. Перерабатывается 1,5 млрд. м3 попутного нефтяного газа, производство ШФЛУ - до 330 тыс. т/г, общая стоимость комплекса, включая 32-х километровую врезку в конденсатопровод «Уренгой-Сургутский ЗСК», - 630 млн. рублей ($22,5 млн.). По схожей технологии могут работать малогабаритные установки сепарации, предназначенные для установки на промыслах.

Закачка ПНГ в пласт для повышения нефтеотдачи

Количество технологий, схем эксплуатации и оборудования (разной степени эффективности и освоенности) для повышения нефтеотдачи (см. диаграмму «Методы повышения нефтеотдачи») очень велико.

ПНГ, в силу своей гомологической близости к нефти, представляется оптимальным агентом газового и в особенности водогазового воздействия (ВГВ) на пласт закачкой попутного нефтяного газа и иных рабочих жидкостей с его использованием (ПНГ+ вода, водно-полимерные композиции, растворы кислот и др.) 4. При этом увеличение нефтеизвлечения по сравнению с заводнением пласта необработанной водой зависит от конкретных условий. Скажем, разработчики технологии ВГВ (ПНГ+вода) указывают, что наряду с утилизацией ПНГ дополнительная добыча нефти составила 4-9 тыс. т/г нефти на 1 участок.
Более перспективными видятся технологии сочетающие закачку ПНГ с переработкой. При проектировании обустройства Копанского газоконденсатнонефтяного месторождения был исследован следующий вариант освоения ресурсов углеводородов. Из пласта извлекается нефть вместе с растворенным и попутными газами. Из газа отделяется конденсат и часть осушенного газа сжигается на электростанции для получения электроэнергии и выхлопных газов. Выхлопные газы закачиваются в газоконденсатную шапку («сайклинг-процесс») для повышения конденсатоотдачи.

Сайклинг-процесс считается одним из эффективных методов повышения конденсатоотдачи пласта5. Однако в нашей стране он не реализован ни на одном газоконденсатном месторождении или газоконденсатнои шапке6. Одна из причин - дороговизна процесса консервации запасов сухого газа. В рассматриваемой же технологии часть сухого газа подается потребителю. Другая, сжигаемая часть, обеспечивает получение достаточного для сайклинг-процесса количества закачиваемого газа, поскольку 1 м3 метана при сжигании превращается примерно в 10 м3 выхлопных газов.

ПРИМЕР: Консорциум по разработке Харьягинского месторождения - Total, Norsk Hydro и «ННК» - планирует реализовать проект по утилизации попутного нефтяного газа7 стоимостью от $10-20 млн. На Харьягинском месторождении ежегодно добывается около 900 тыс. т нефти и 150 млн. м3 ПНГ. Часть попутного газа идет на собственные нужды, а остальное - сжигается. Предложено три решения проблемы, одно из которых - закачка ПНГ в скважину ниже пласта, откуда добывается нефть. По предварительным расчетам, так возможно закачать весь ПНГ, однако есть опасения, что газ дойдет до близлежащей скважины, которая уже ликвидирована и принадлежит ЛУКОЙЛу. Тем не менее, этот вариант - предпочтительный. Другие два менее приоритетных варианта - продажа ПНГ ЛУКОЙЛу (нет инфраструктуры) или производство электроэнергии (проблема с потенциальным покупателем).

Установка энергоблоков

Один из наиболее распространенных способов утилизации ПНГ - использование как топлива для электростанций. При приемлемом составе ПНГ эффективность этого способа высока. По данным разработчиков 80%), работающая на ПНГ, при егоэлектростанция с утилизацией тепла (кпд учетной стоимости 300 руб. за 1000 м3, окупается за 3-4 года.
Предложение энергоблоков на рынке очень широко. Отечественные и зарубежные компании наладили выпуск установок, как в газотурбинном (ГТУ), так и в поршневом вариантах. Как правило, для большинства конструкций имеется возможность работы на ШФЛУ или ПНГ (определенного состава). Практически всегда предусмотрена утилизация тепла выхлопных газов в систему теплоснабжения промысла, предлагаются варианты самых современных и технологичных парогазовых установок. Одним словом можно с уверенностью говорить о буме внедрения объектов малой энергетики нефтяными компаниями для снижения зависимости от поставок электроэнергии РАО «ЕЭС», упрощения требований к инфраструктуре при освоении новых месторождений, снижения затрат на электроэнергию с одновременной утилизацией ПНГ и ШФЛУ. Согласно расчетам, себестоимость 1 кВтч электроэнергии для ГТУ «Пермских моторов» составляет 52 коп, а для импортного агрегата на основе поршневого двигателя «Катерпиллер» - 38 коп. (при невозможности работать на чистом ШФЛУ и наблюдается потеря мощности при работе на смешанном топливе).

ПРИМЕРЫ: Типичная стоимость дизельной электростанции зарубежного производства мощностью 1,5 МВт по прайс-листу дилера составляет €340 тысяч ($418 тыс.). Однако установка на промысле энергоблока такой же мощности с инфраструктурой (резервированием) и работающего на подготовленном газе требует капитальных вложений в $1,85-2,0 млн. 8

При этом себестоимость 1 КВтч при цене газа 294 руб./тыс. м3 и расходе 451-580 м3/тыс. КВтч составит уже 1,08-1,21 руб., что превышает текущий тариф - 1,003 руб./КВтч. При повышении действующего тарифа до 2,5 руб./КВтч и сохранении цены газа на сегодняшнем уровне дисконтированный срок окупаемости 8-10 лет.
«Сургутнефтегаз», утилизирующий до 96% ПНГ, ведет строительство 5 газотурбинных электростанций на отдаленных месторождениях - Лукъявинском, Русскинском, Биттемском и Лянторском. Реализация проекта позволит обеспечить выработку 1,2 млрд. КВтч/год (суммарная мощность электростанции 156 МВт на базе 13 энергоблоков единичной мощностью 12 МВт производства «Искра-Энергетика»). Каждый из этих энергоблоков способен в год переработать до 30 млн. м3 попутного газа и выработать до 100 млн. кВтч электроэнергии. Суммарная стоимость проекта составляет по разным оценкам от $125-200 млн., его выполнение задерживается в связи со срывом графика поставки энергоблоков.

Переработка ПНГ на синтетическое топливо (GTL)

Технология GTL только начинает свое распространение. Ожидается, что при дальнейшем развитии и росте цен на топливо она станет рентабельной. Пока GTL-проекты, реализующие технологию Фишера-Тропша, рентабельны только при достаточно больших объемах перерабатываемого сырья (от 1,4-2,0 млрд. м3 в год). Обычно GTL-проект рассчитан на утилизацию метана, однако есть сведения, что процесс может быть реализован и для углеводородных фракций C3-C4 и соответственно применен для переработки ПНГ. Первой стадией производства на базе технологии GTL является получение синтез-газа, который может быть получен даже из угля. Однако этот способ переработки более применим к ПНГ и ШФЛУ, а газовый бензин выгоднее утилизировать отдельно в качестве нефтехимического сырья.

На сегодняшний день в мире реализовано 2 крупных GTL-проекта:

Shell Middle Distillate Synthesis (SMDS) - Бинтулу, Малайзия, 600 000 т/г,

Завод в ЮАР постройки Sasol, заказчик Mossgas для PetroSA, 1 100 000 т/г.

В ближайшее время планируется осуществить полтора десятка других крупных проектов, находящихся в разной стадии готовности. Один из них, например, проект строительства завода в Катаре мощностью 7 млн. т нефтяного эквивалента. Его ориентировочная стоимость составит $4 млрд., или $600 на тонну продукции. Текущая стоимость строительства GTL-завода, по оценкам специалистов, составляет $400-500 на тонну продукции, и продолжает снижаться. В качестве комментария к этой цифре добавим, что хотя опыт эксплуатации коммерческих предприятий GTL-FT имеется, он ограничен жаркой и умеренной климатической зоной. Таким образом, имеющиеся проекты не могут быть перенесены без изменений в Россию, например, в район Якутии. Учитывая отсутствие у компаний опыта эксплуатации установок GTL-FT в жестких климатических условиях, изменение и доработка проектов могут потребовать значительного времени и, возможно, проведения дополнительных исследовательских работ. Среди известных разработчиков GTL-проектов отметим американскую венчурную компанию «Syntroleum» (www.syntroleum.com ), поставившую задачу проведения исследований с целью получения малых модульных производств для временного размещения на месторождениях, в т.ч. с возможностью утилизации ПНГ и ШФЛУ.

ПРИМЕРЫ: По оценке ООО НПО «Синтез» капитальные затраты на завод GTL-FT производительностью 500 тысяч тонн жидкого топлива в год с потреблением 1,4 млрд. м3 природного газа в год при размещении в Якутии составит $650 млн. ($1300 на тонну годовой производительности). Согласно рекламным материалам российского разработчика строительство установки, использующей традиционные технологии (паровая конверсия, получение 82% метанола-сырца) с годовой мощностью 12,5 тыс. тонн метанола и утилизацией 12 млн. м3 газа требует капитальных затрат $12 млн. ($960 на тонну годовой производительности). Установка «Энергосинтоп10000» примерно такой же производительности (12 тыс. тонн 96% технического метанола) обойдется в $10 млн. ($830 на тонну годовой производительности). А благодаря низким эксплутационных расходов себестоимость метанола окажется на 17-20% ниже.

Криогенная переработка ПНГ в сжиженный газ

Разработчики и изготовители предлагают как крупнотоннажные установки получения сжиженного природного газа производительностью 10-40 т/час с высоким (более 90%) коэффициентом ожижения перерабатываемого газа, так и установки малой производительности до 1 т/час. Способ сжижения - использование замкнутого однопоточного холодильного цикла на смеси углеводородов с азотом.
Для установок малой производительности по сжиженному природному газу возможны следующие способы сжижения:

Применение однопоточного холодильного цикла при переработке малых расходов исходного газа (коэффициент ожижения 0,95)
. применение детандерного цикла:
. а) замкнутого с коэффициентом ожижения 0,7-0,8;
. б) разомкнутого с коэффициентом ожижения 0,08-0,12.

Последний рекомендуется к применению на газораспределительных станциях, где узел редуцирования заменяется установкой получения сжиженного природного газа с расширением газа в детандере и частичным его ожижением. Этот способ практически не требует затрат энергии. Производительность установки зависит от расхода поступающего на газораспределительные станции газа и диапазона перепада давлений на входе и выходе станции. Получение сжиженного газа (метана) из ПНГ требует его предварительной подготовки. Условия перспективности криогенной переработки ПНГ (по данным «ЛенНИИхиммаш»):

Наиболее рентабельны установки при производительности от 500 млн. нм3/год до 3,0 млрд. нм3/год по перерабатываемому газу.

Располагаемое давление исходного газа для переработки не менее 3,5 МПа. При давлении ниже установка должна быть укомплектована блоком предварительного дожатия газа, что увеличивает капитальные и энергетические затраты.
. Запас газа не менее чем на 20 лет эксплуатации установки.
. Содержание тяжелых углеводородов, % об.: С3Н8 > 1,2. Сумма C 4+В > 0,45.
. Низкое содержание сернистых соединений (не более 60 мг/куб.м) и двуокиси углерода (не более 3%), не требующее очистки от них исходного газа.
. При содержании в газе этана более 3,5% об. и наличия его потребителей целесообразно получение в качестве товарного продукта этановой фракции. Это значительно снижает удельные эксплуатационные затраты.

1 Например, в ценах 2000 г.: себестоимость добычи ПНГ была 200-250 руб./тыс. м3, транспортировка могла добавить еще до 400 руб./тыс. м3 при рекомендованной Минэкономразвития и Минфином цене 150 руб./тыс. м3. Сегодня эту цену регулируют ФЭКи и в среднем это $10/тыс. м3.

2 Например, в РФ ежегодно производится 8 млн. т СУГ на сумму около $1 млрд. СУГ используется как сырье для предприятий нефтехимической промышленности (50-52% газа), в бытовых целях, на транспорте и в промышленности (28-30%). 18-20% газа идет на экспорт. Вследствие невысокого уровня газификации страны для личных нужд СУГ потребляют около 50 млн. человек, в то время как природный газ - 78 млн. человек.

3 3 июня 1989 года около дер. Улу-Теляк произошел разрыв трубы диаметром 700 мм продуктопровода широких фракций легких углеводородов (ШФЛУ) Западная Сибирь - Урал-Поволжье с последующим взрывом углеводородно-воздушной смеси, эквивалентным взрыву 300 тонн тротила. Возникший при этом пожар охватил территорию около 250 га, с находящимися на ней двумя пассажирскими поездами (Новосибирск-Адлер, 20 вагонов и Адлер-Новосибирск, 18 вагонов), в которых следовало 1284 пассажира (в т.ч. 383 - дети) и 86 членов поездных и локомотивных бригад. Взрывом были разрушены 37 вагонов и 2 электровоза, из которых 7 вагонов сгорели полностью, 26 - выгорели изнутри, Ударной волной было оторвано и сброшено с путей 11 вагонов. На месте аварии было обнаружено 258 трупов, 806 человек получили ожоги и травмы различной степени тяжести, из них 317 умерло в больницах. Всего погибло 575 человек, травмировано - 623.

4 Известно, что закачивать газ в залежи вязких нефтей с целью вытеснения и поддержания давления не очень эффективно, так как вследствие языкообразования происходит преждевременный прорыв газа к эксплуатационным скважинам.

5 Удовлетворительные технико-экономические показатели сайклинг-процесса достигаются только на ГКМ с начальным содержанием конденсата в газе не ниже 250—300 г/м3.

6 Среди проблем, связанных с закачкой газа, эксперты отмечают отсутствие в России подобного опыта, а как следствие - сложность согласования проектов. Единственный пример практически реализованного в странах СНГ сайклинг-процесса - Новотроицкое ГКМ (Украина).

7 По материалам круглого стола "Современные технологии и практика по сокращению объемов сжигания попутного нефтяного газа", 2005 г. Данных о реализации проекта пока нет.
8 Данные по тарифам, капвложениям, окупаемости и т.п. согласно «Инвестиционному замыслу строительства ЭСН на Западно-Таркосалинском ГП ООО «Ноябрьскгаздобыча» с использованием газа выветривания в качестве топлива». ТюменьНИИГипрогаз, ОАО «Газпром», 2005.

До Великой Отечественной войны промышленные запасы природного газа были известны в Прикарпатье, на Кавказе, в Заволжье и на Севере (Коми АССР). Изучение запасов природного газа было связано только с разведкой нефти. Промышленные запасы природного газа в 1940 г. составляли 15 млрд м 3 . Затем месторождения газа были обнаружены на Северном Кавказе, в Закавказье, на Украине, в Поволжье, Средней Азии, Западной Сибири и на Дальнем Востоке. На 1 января 1976 г. разведанные запасы природного газа составляли 25,8 трлн м 3 , из них в европейской части СССР – 4,2 трлн м 3 (16,3%), на Востоке – 21,6 трлн м 3 (83,7%), в том числе 18,2 трлн м 3 (70,5%) – в Сибири и на Дальнем Востоке, 3,4 трлн м 3 (13,2%) – в Средней Азии и в Казахстане. На 1 января 1980 г. потенциальные запасы природного газа составляли 80–85 трлн м 3 , разведанные – 34,3 трлн м 3 . Причем запасы увеличились главным образом благодаря открытию месторождений в восточной части страны – разведанные запасы там были на уровне около
30,1 трлн м 3 , что составляло 87,8% от общесоюзных.
На сегодняшний день Россия обладает 35% от мировых запасов природного газа, что составляет более 48 трлн м 3 . Основные районы залегания природного газа по России и странам СНГ (месторождения):

Западно-сибирская нефтегазоносная провинция:
Уренгойское, Ямбургское, Заполярное, Медвежье, Надымское, Тазовское – Ямало-Ненецкий АО;
Похромское, Игримское – Березовская газоносная область;
Мельджинское, Лугинецкое, Усть-Сильгинское – Васюганская газоносная область.
Волго-Уральская нефтегазоносная провинция:
наиболее значительное – Вуктылское, в Тимано-Печорской нефтегазоносной области.
Средняя Азия и Казахстан:
наиболее значительное в Средней Азии – Газлинское, в Ферганской долине;
Кызылкумское, Байрам-Алийское, Дарвазинское, Ачакское, Шатлыкское.
Северный Кавказ и Закавказье:
Карадаг, Дуванный – Азербайджан;
Дагестанские Огни – Дагестан;
Северо-Ставропольское, Пелачиадинское – Ставропольский край;
Ленинградское, Майкопское, Старо-Минское, Березанское – Краснодарский край.

Также месторождения природного газа известны на Украине, Сахалине и Дальнем Востоке. По запасам природного газа выделяется Западная Сибирь (Уренгойское, Ямбургское, Заполярное, Медвежье). Промышленные запасы здесь достигают 14 трлн м 3 . Особо важное значение сейчас приобретают ямальские газоконденсатные месторождения (Бованенковское, Крузенштернское, Харасавейское и др.). На их основе идет осуществление проекта «Ямал – Европа». Добыча природного газа отличается высокой концентрацией и ориентирована на районы с наиболее крупными и выгодными по эксплуатации месторождениями. Только пять месторождений – Уренгойское, Ямбургское, Заполярное, Медвежье и Оренбургское – содержат 1/2 всех промышленных запасов России. Запасы Медвежьего оцениваются в 1,5 трлн м 3 , а Уренгойского – в 5 трлн м 3 . Следующая особенность заключается в динамичности размещения мест добычи природного газа, что объясняется быстрым расширением границ выявленных ресурсов, а также сравнительной легкостью и дешевизной вовлечения их в разработку. За короткий срок главные центры по добыче природного газа переместились из Поволжья на Украину, Северный Кавказ. Дальнейшие территориальные сдвиги вызваны освоением месторождений Западной Сибири, Средней Азии, Урала и Севера.

После распада СССР в России происходило падение объема добычи природного газа. Спад наблюдался в основном в Северном экономическом районе (8 млрд м 3 в 1990 г. и 4 млрд м 3 в 1994 г.), на Урале (43 млрд м 3 и 35 млрд м 3), в Западно-Сибирском экономическом районе (576 и
555 млрд м 3) и в Северо-Кавказском (6 и 4 млрд м 3). Добыча природного газа оставалась на прежнем уровне в Поволжском (6 млрд м 3) и в Дальневосточном экономических районах. В конце 1994 г. наблюдалась тенденция к росту уровня добычи. Из республик бывшего СССР Российская Федерация дает больше всего газа, на втором месте – Туркмения (более 1/10), далее идут Узбекистан и Украина. Особое значение приобретает добыча природного газа на шельфе Мирового океана. В 1987 г. на морских месторождениях было добыто 12,2 млрд м 3 , или около 2% газа, добытого в стране. Добыча попутного газа в том же году составила 41,9 млрд м 3 . Для многих районов одним из резервов газообразного топлива служит газификация угля и сланцев. Подземная газификация угля осуществляется в Донбассе (Лисичанск), Кузбассе (Киселевск) и Подмосковном бассейне (Тула).

Природный газ был и остается важным продуктом экспорта в российской внешней торговле. Основные центры переработки природного газа расположены на Урале (Оренбург, Шкапово, Альметьевск), в Западной Сибири (Нижневартовск, Сургут), в Поволжье (Саратов), на Северном Кавказе (Грозный) и в других газоносных провинциях.


Можно отметить, что комбинаты газопереработки тяготеют к источникам сырья – месторождениям и крупным газопроводам. Важнейшее использование природного газа – в качестве топлива. Последнее время идет тенденция к увеличению доли природного газа в топливном балансе страны. Как газообразное топливо природный газ имеет большие преимущества не только перед твёрдым и жидким топливом, но и перед другими видами газообразного топлива (доменным, коксовым газом), так как теплота сгорания его значительно выше. Метан - основная составная часть этого газа. Кроме метана, в природном газе присутствуют ближайшие гомологи его - этан, пропан, бутан. Чем выше молекулярная масса углеводорода, тем обычно меньше его содержится в природном газе.

Состав природного газа разных месторождений различен.

Средний состав природного газа:

CH 4

C 2 H 6

C 3 H 8

C 4 H 10

C 5 H 12

N 2 и др. газы

Природный газ

(% по объему)

80-98

0,5-4,0

0,2-1,5

0,1-1,0

0-1,0

2-13

Наиболее ценится природный газ с высоким содержанием метана – это ставропольский (97,8% СН 4), саратовский (93,4%), уренгойский (95,16%).
Запасы природного газа на нашей планете очень велики (примерно 1015 м 3). У нас в России известно более 200 месторождений, они находятся в Западной Сибири, в Волго-Уральском бассейне, на Северном Кавказе. По запасам природного газа первое место в мире принадлежит России.
Природный газ является ценнейшим видом топлива. При сгорании газа выделяется много теплоты, поэтому он служит энергетически эффективным и дешевым топливом в котельных установках, доменных, мартеновских и стекловаренных печах. Использование на производстве природного газа дает возможность значительно повысить производительность труда.
Природный газ – источник сырья для химической отрасли промышленности: получение ацетилена, этилена, водорода, сажи, различных пластмасс, уксусной кислоты, красителей, медикаментов и других продуктов.

Попутный нефтяной газ – это газ, существующий вместе с нефтью, он растворен в нефти и находится над ней, образуя «газовую шапку», под давлением. На выходе из скважины давление падает, и попутный газ отделяется от нефти.

Состав попутного нефтяного газа разных месторождений различен.

Средний состав газа:

CH 4

C 2 H 6

C 3 H 8

C 4 H 10

C 5 H 12

N 2 и др. газы

Попутный

нефтяной газ

(% по объему)

Попутный нефтяной газ по своему происхождению тоже является природным. Особое название он получил потому, что находится в залежах вместе с нефтью:

Либо растворен в ней,

Либо находится в свободном состоянии

Попутный нефтяной газ в основном тоже состоит из метана, но в нем содержится значительное количество и других углеводородов.

Этот газ в прошлые времена не использовался, а просто сжигался. В настоящее время его улавливают и используют как топливо и ценное химическое сырье. Возможности использования попутных газов даже шире, чем природного газа, т.к. состав их богаче. В попутных газах содержится меньше метана, чем в природном газе, но в них значительно больше гомологов метана. Чтобы использовать попутный газ более рационально, его разделяют на смеси более узкого состава. После разделения получают газовый бензин, пропан и бутан, сухой газ.


III

Углеводороды

CH 4 , C 2 H 6

C 3 H 8 , C 4 H 10

C 5 H 12 , C 6 H 14 и др.

Выделяемые смеси

Сухой газ

Пропан-бутановая смесь

Газовый бензин

Применение

Сухой газ, по составу сходный с природным, используется для получения ацетилена, водорода и других веществ, а также в качестве топлива.

Пропан и бутан в сжиженном состоянии широко используются в качестве горючего в быту и в автомобильном транспорте.

Газовый бензин, содержащий летучие жидкие углеводороды, применяется как добавка к бензинам для лучшего их воспламенения при запуске двигателя.

Извлекают и индивидуальные углеводороды – этан, пропан, бутан и другие. Дегидрированием их получают непредельные углеводороды – этилен, пропилен, бутилен и др.

Попутный нефтяной газ (ПНГ) представляет собой фракции различных летучих веществ, которые входят в состав сырой нефти. В связи с действием высокого давления они находятся в редком агрегатном состоянии. Но при добыче нефти давление резко уменьшается, а газы начинают выкипать из сырой нефти.

Состав таких веществ может быть очень разнообразным. В связи со сложностью их уловления и переработки ранее ПНГ просто выжигались из добываемой нефти. Однако с развитием нефтехимической промышленности, уменьшением запасов сырья и увеличением стоимости данных веществ их стали выделять в отдельную группу и перерабатывать вместе с природным газом. Главными составляющими попутного нефтяного газа являются метан, бутан, пропан и этан. Все эти вещества известны нам благодаря своей способности выделять большое количество тепла при сгорании. Этан является ценным сырьем для нефтехимии. Именно поэтому в наше время сложно встретить факелы над нефтедобывающими платформами. К примеру для залежей РФ в попутном газе содержится около 70% метана, до 13% этана, 17% пропана и 8% бутана. Просто сжигать такое количество энергоносителей стало нерентабельно.

Еще одной причиной переработки и грамотной утилизации попутного нефтяного газа стали экологические проблемы. Большие объемы угарного газа выделяются при сгорании этих веществ, что приводит к нарушению экологического баланса и повышению среднегодовой температуры в этих регионах.

Современная нефтехимия способна перерабатывать данные вещества и создавать из них полимерные соединения. Это стало решающим аргументом в пользу грамотного использования попутного газа. Оно позволило не только окупить затраты на его переработку, но и стало приносить большой доход. В наше время все ископаемые углеводороды перерабатываются практически на сто процентов.

Причины такого решения

Основными причинами, которые повлияли на добычу и переработку попутного нефтяного газа, были экономические и экологические. Не стоит забывать, что залежи углеводородов постепенно истощаются. Ископаемые не восстанавливаются за короткий период времени, поэтому их эффективное использование позволяет продлить срок службы добычи данных веществ. Несмотря на достаточно халатное отношение к экологическим проблемам в нашей стране, переоценить вредное влияние нефтедобывающих заводов сложно. При сгорании попутного газа образуется множество вредных веществ (углекислый газ и копоть различного типа). Легкие фракции этих продуктов способны преодолевать огромные расстояния с ветром. Это приносит ущерб не только малонаселенной Сибири, но и многим прилегающим территориям. Наносится вред природе нашей страны, что приводит не только к моральному, но и материальному ущербу. Проблему удалось решить благодаря стремительному развитию прогресса. В попутном нефтяном газе содержатся так называемые легкие вещества группы С2+. Все эти газы служат отличным сырьем для нефтехимии. Они используются для создания полимеров, в парфюмерной промышленности, строительстве и т.д. Таким образом, грамотная переработка попутного нефтяного газа стала оправдывать себя с экономической точки зрения.

Процесс переработки попутного нефтяного газа преследует единственную цель – выделить из газообразного метана и этана более легкие составляющие. Выполняться процесс может несколькими способами. Каждый из них имеет свои преимущества и позволяет получить сырье для дальнейшей переработки. Самый простой способ представляет собой процесс конденсации легкий фракций при низкой температуре и обычном давлении. Например, метан переходит в жидкое состояние при температуре -161,6 градус, этан – при 88,6. В то же время более легкие примеси оседают при более высоких температурах. Пропан имеет температуру сжижения -42 градуса, а бутан -0,5. Процесс конденсации очень простой. Смесь охлаждается в несколько этапов, во время которых удается отделить бутан, затем пропан и этан от газообразного метана. Последний используется в качестве топлива, а остальные вещества становятся сырьем для нефтехимии. При этом сжиженные газы относят к широкой фракции легких углеводородов, а газообразные – к сухому отбензиненному газу (СОГ).

Еще одним методом переработки является химический процесс фильтрации. Он основан на том, что разные вещества взаимодействуют с различными типами жидкости. Принцип основан на низкотемпературной абсорбции ШФЛУ другими углеводородами или жидкостями. Очень часто в качестве рабочего вещества используется жидкий пропан. В рабочие установки поступает нефтяной газ. Его легкие фракции растворяются в пропане, в то время как метан и этан проходят дальше. Процесс называется барбитурированием. После нескольких этапов фильтрации на выходе получается два готовых вида продукции. Жидкий пропан, обогащенный ШФЛУ, и чистый метан. Первые вещества становятся сырьем для нефтехимии, а метан используется в качестве топлива. В редких случаях в качестве рабочей жидкости используются маслянистые углеводороды, что приводит к образованию других полезных веществ.

Газопереработка в СИБУРе

Самым крупным предприятием на территории Российской Федерации, занимающимся переработкой попутного нефтяного газа, является компания СИБУР. Основные производственные мощности достались холдингу еще от Советского Союза. Именно на их базе было организовано само предприятие. Со временем грамотная политика и применение современных технологий привело к образованию новых активов и дочерних компаний. На сегодняшний день в состав компании входит шесть заводов по переработке нефтяного газа, расположенных в Тюменской области.

Название Год запуска Местоположение Проектная мощность по сырому газу, млрд. м³ Поставщики ПНГ Производство СОГ в 2009 году, млрд м³ Производство ШЛФУ (ПБА) в 2009 году, тыс. тонн
«Южно-Балыкский ГПК» 1977-2009 г. Пыть-Ях, ХМАО 2,930 Месторождения ООО «РН-Юганнефтегаз» 1,76 425,9
«Ноябрьский газоперерабатывающий комплекс» (Муравленковский ГПЗ, Вынгапуровская КС, Вынгаяхинский КЦ, Холмогорский КЦ) 1985-1991 г. Ноябрьск, ЯНАО 4,566 Месторождения ОАО «Газпромнефть-Ноябрьскнефтегаз» 1,61 326,0
«Няганьгазпереработка»* 1987-1989 г. Нягань, ХМАО 2,14 Месторождения ОАО «ТНК-Нягань»

Месторождения ТПП «Урайнефтегаз»

ООО «ЛУКОЙЛ-Западная Сибирь»

1,15 158,3 (ПБА)
«Губкинский ГПК» 1989-2010 г. Губкинский, ЯНАО 2,6 Месторождения ООО «РН-Пурнефтегаз», месторождения ООО «Пурнефть» 2,23 288,6
«Нижневартовский ГПЗ»* 1974-1980 г. Нижневартовск, ХМАО 4,28 Месторождения компаний «ТНК-ВР», «Славнефть», «РуссНефть» 4,23 1307,0
«Белозерный ГПЗ»* 1981 г. Нижневартовск, ХМАО 4,28 Месторождения компаний «ТНК-ВР», «РуссНефть» 3,82 1238,0

* – в составе СП «Юграгазпереработка» с нефтяной компанией ТНК-ВР.

На сегодняшний день компания СИБУР тесно сотрудничает с нефтедобывающим предприятием ТНК-ВР. Получая попутный нефтяной газ с вышек этой организации, дочернее предприятие «Юграгазпереработка» осуществляет его переработку. При этом СОГ остается в собственности ТНК-ВР, а жидкие фракции отходят к СИБУР. В дальнейшем они становятся сырьем для остальных заводов компании, которые производят на их основе необходимые материалы путем газофракционирования и термической обработки. К примеру, в 2010 году всем заводам СИБУРа удалось произвести 15,3 млрд. кубических метров сухого газа и почти 4 тонны ШФЛУ. Это позволило получить громадный доход и существенно снизить вредные выбросы в атмосферу.

НЕФТЬ И ГАЗ, ИХ СОСТАВ И ФИЗИЧЕСКИЕ СВОЙСТВА

НЕФТЬ

Нефть представляет собой горючую, маслянистую жидкость, по преимуществу темного цвета, со специфическим запахом. По химическому составу нефть является в основном смесью различных углеводородов, содержащихся в ней в самых разнообразных со­четаниях и определяющих ее физические и химические свойства.

В нефтях встречаются следующие группы углеводородов: 1) ме­тановые (парафиновые) с общей формулой С я Н 2я+2 ; 2) нафтеновые с общей формулой С„Н 2П; 3) ароматические с общей формулой

СпН 2л -в- /

Наиболее распространены в природных условиях углеводороды метанового ряда. Углеводороды этого ряда - метан СН 4 , этан С 2 Н в, пропан С 3 Н 8 и бутан С 4 Ню - при атмосферном давлении и нормаль­ной температуре находятся в газообразном состоянии. Они входят в состав нефтяных газов. При повышении давления и температуры эти легкие углеводороды могут частично или полностью переходить в жидкое состояние.

Пентан С 8 Н 12 ,\гексан С в Н 14 и гептан С 7 Н 1в при тех же условиях находятся в неустойчивом состоянии: легко переходят из газообраз­ного состояния в жидкое и обратно.

Углеводороды от С 8 Н 18 до С 17 Н зв - жидкие вещества.

Углеводороды, в молекулах которых имеется свыше 17 атомов углерода, относятся к твердым веществам. Это парафины и цере­зины, содержащиеся в тех или иных количествах во всех нефтях.

Физические свойства нефтей и нефтяных газов, а также их каче­ственная характеристика зависят от преобладания в них отдельных углеводородов или их различных групп. Нефти с преобладанием сложных углеводородов (тяжелые нефти) содержат меньшее коли­чество бензиновых и масляных фракций. Содержание в нефти


В, М-МУРАВЬЕ В


большого количества смолистых и парафиновых соединений делает ее вязкой и малоподвижной, что требует особых мероприятий для извлечения ее на поверхность и последующей транспортировки.


Кроме того, нефти подразделяют по основным качественным по­казателям - содержанию светлых бензиновых, керосиновых и мас­ляных фракций.

Фракционный состав нефтей определяют путем лабораторной разгонки их, которая основана на том, что каждый углеводород, входящий в ее состав, имеет свою определенную точку кипения.

Легкие углеводороды имеют низкие точки кипения. Например, у пентана (С Б Н1а) точка кипения равна 36° С, у гексана (С 6 Н1 4) - 69° С. У тяжелых углеводородов точки кипения более высокие и доходят до 300° С и выше. Поэтому при подогревании нефти выки­пают и испаряются сначала ее более легкие фракции, при повыше­нии температуры начинают кипеть и испаряться более тяжелые угле­водороды.

Если пары нефти, подогретой до определенной температуры, собрать и охладить, то эти пары снова превратятся в жидкость, представляющую собой группу углеводородов, выкипающих из нефти в данном интервале температур. Таким образом, в зависимости от температуры подогрева нефти из нее сначала испаряются самые легкие - бензиновые фракции, затем более тяжелые - керосино­вые, затем соляровые и т. д.

Процентное содержание в нефти отдельных фракций, выкипаю­щих в определенных температурных интервалах, характеризует фракционный состав нефти.

Обычно в лабораторных условиях разгонку нефти производят в интервалах температур до 100, 150, 200, 250, 300 и 350° С.

Простейшая переработка нефти основана на том же принципе, что и описанная лабораторная разгонка. Это прямая перегонка нефти с выделением из нее в условиях атмосферного давления и на­грева до 300-350° С бензиновых, керосиновых и соляровых фракций.


В СССР встречаются нефти разнообразного химического состава и свойств. Даже нефти одного и того же месторождения могут сильно различаться между собой. Однако нефти каждого района СССР имеют и свои специфические особенности. Например, нефти Урало-Волжского района обычно содержат значительное количество смол, парафина и сернистых соединений. Нефти Эмбенского района от­личаются относительно небольшим содержанием серы.

Наибольшим разнообразием состава и физических свойств об­ладают нефти Бакинского района. Здесь наряду с бесцветными неф-тями в верхних горизонтах Сураханского месторождения, состоя­щими практически из одних только бензиновых и керосиновых фрак­ций, встречаются нефти, не содержащие бензиновых фракций. В этом районе имеются нефти, не содержащие смолистых веществ, а также высокосмолистые. Во многих нефтях Азербайджана содер­жатся нафтеновые кислоты. В большинстве нефтей отсутствуют пара­фины. По содержанию серы все бакинские нефти относятся к мало-сернистым.

Одним из основных показателей товарного качества нефти/яв­ляется ее плотность. Плотность нефти при стандартной температуре 20° С и атмосферном давлении колеблется от 700 (газовый конденсат) до 980 и даже 1000 кг/м 3 .

В промысловой практике по величине плотности сырой нефти ориентировочно судят о ее качестве. Легкие нефти с плотностью до 880 кг/м 3 являются наиболее ценными; они, как правило, содержат больше бензиновых и масляных фракций.

Плотность, нефтей обычно измеряют специальными ареометрами. Ареометр представляет собой стеклянную трубку с расширенной нижней частью, в которой помещается ртутный термометр. Вслед­ствие значительного веса ртути ареометр при погружении в нефть принимает вертикальное положение. В верхней узкой части арео­метр имеет шкалу для замера плотности, а в нижней части - шкалу температур.

Для определения плотности нефти ареометр опускают в сосуд с этой нефтью и по верхнему краю образовавшегося мениска отсчи­тывают величину ее плотности.

Чтобы полученный замер плотности нефти при данной темпера­туре привести к стандартным условиям, т. е. к температуре 20° С, необходимо ввести температурную поправку, которая учитывается следующей формулой:

р2о = Р* + в(<-20), (1)

где р 20 - искомая плотность при 20° С; р/ - плотность при тем­пературе измерения I; а - коэффициент объемного расширения нефти, величина которого берется из специальных таблиц; она