Нужно выбрать одну из. Опровержение "Парадокса Монти Холла" (мнимое опровержение, как выяснилось)

Теория вероятностей - раздел математики, который готов запутать самих математиков. В отличие от остальных, точных и незыблемых догм этой науки, данная область кишит странностями и неточностями. В этот раздел совсем недавно добавили так сказать новый параграф - парадокс Монти Холла. Это, в общем, задача, но решается она совсем не так, как привычные нам школьные или университетские.

История происхождения

Над парадоксом Монти Холла люди ломают свои головы, начиная с далекого 1975 года. Но начать стоит с 1963. Именно тогда на экраны вышло телешоу под названием Let"s make a deal, что переводится как "Давайте заключим сделку". Его ведущим стал никто иной как Монти Холл, который подкидывал зрителям порой неразрешимые задачки. Одной из наиболее ярких стала та, которую он представил в 1975 году. Задача стала частью математической теории вероятности и парадоксов, которые укладываются в ее рамки. Стоит также отметить, что данное явление стало причиной сильных дискуссий и жесткой критики со стороны ученых. Парадокс Монти Холла был опубликован в журнале Parade в 1990 году, и с тех пор стал еще более обсуждаемым и спорным вопросом всех времен и народов. Ну а теперь переходим непосредственно к его формулировке и трактовке.

Формулировка проблемы

Существует множество трактовок данного парадокса, но мы решили представить вам классическую, которая была показана в самой программе. Итак, перед вами три двери. За одной из них находится автомобиль, за двумя другими по одной козе. Ведущий предлагает вам выбрать одну из дверей, и, допустим, вы останавливаетесь на номере 1. Пока что вы не знаете, что за этой самой первой дверью, так как вам открывают третью, и показывают, что за ней коза. Следовательно, вы пока что не проиграли, ведь вы не выбрали ту дверь, которая скрывает проигрышный вариант. Следовательно, ваши шансы на получение машины возрастают.

Но тут ведущий предлагает вам изменить решение. Перед вами уже две двери, за одной коза, за другой желанный приз. Именно в этом и заключается суть проблемы. Кажется, что какую бы дверь из двух вы ни выбрали, шансы будут 50 на 50. Но на самом деле, если вы поменяете решение, вероятность того, что вы победите, станет больше. Как так?

Первый выбор, который вы делаете в этой игре - случайный. Вы никак не можете даже отдаленно догадываться, за какой из трех дверей спрятан приз, поэтому рандомно указываете на первую попавшуюся. Ведущий же в свою очередь знает, где что находится. У него есть дверь с призом, дверь, на которую указали вы, и третья без приза, которую он вам и открывает в качестве первой подсказки. Вторая же подсказка кроется в самом его предложении сменить выбор.

Теперь вы уже будете выбирать не наугад одну из трех, а сможете даже изменить свое решение, чтобы получить желаемый приз. Именно предложение ведущего дает человеку веру в то, что автомобиль находится действительно не за той дверью, которую он выбрал, а за другой. В этом и заключается вся суть парадокса, так как, по сути, выбирать (хоть уже из двух, а не из трех) все равно приходится наугад, но шансы на победу возрастают. Как показывает статистика, из 30-ти игроков, которые поменяли свое решение, машину выиграли 18. А это 60%. А из тех же 30-ти человек, которые решение не изменили - всего 11, то есть 36%.

Трактовка в цифрах

Теперь дадим парадоксу Монти Холла более точное определение. Первый выбор игрока разбивает двери на две группы. Вероятность того, что приз расположен за дверью, которую вы выбрали, составляет 1/3, а за теми дверьми, что остались 2/3. Ведущий далее открывает одну из дверей второй группы. Таким образом он переносит всю оставшуюся вероятность, 2/3, на одну дверь, которую вы не выбрали и которую он не открывал. Логично, что после таких расчетов выгоднее будет сменить свое решение. Но при этом важно помнить, что шанс проиграть все-таки имеется. Порой ведущие лукавят, так как вы изначально можете ткнуть на правильную, призовую дверь, а после от нее добровольно отказаться.

Все мы привыкли к тому, что математика, как точная наука, идет рука об руку со здравым смыслом. Тут дело делают цифры, а не слова, точные формулы, а не туманные размышления, координаты, а не относительные данные. Но ее новый раздел под названием теория вероятностей взорвал весь привычный шаблон. Задачи из этой области, как нам кажется, не вкладываются в рамки здравого смысла и полностью противоречат всем формулам и вычислениям. Предлагаем ниже ознакомиться с другими парадоксами теории вероятности, которые имеют нечто общее с тем, который был описан выше.

Парадокс мальчика и девочки

Задачка, на первый взгляд, абсурдная, но она строго подчиняется математической формуле и имеет два варианта решения. Итак, у некого мужчины двое детей. Один из них наверняка мальчик. Какова вероятность того, что мальчиком окажется второй?

Вариант 1. Мы рассматриваем все комбинации двоих детей в семье:

  • Девочка/девочка.
  • Девочка/мальчик.
  • Мальчик/девочка.
  • Мальчик/мальчик.

Первая комбинации нам очевидно не подходит, поэтому, исходя из трех последних, мы получаем вероятность в 1/3 того, что вторым ребенком окажется маленький мужчина.

Вариант 2. Если же представить себе такой случай на практике, откинув дроби и формулы, то, исходя из того факта, что на Земле есть только два пола, вероятность того, что вторым ребенком будет мальчик, составляет 1/2.

Этот опыт показывает нам, как лихо можно манипулировать статистикой. Итак, "спящей красавице" вкалывают снотворное и кидают монетку. Если выпадает орел, то ее будят и эксперимент прекращается. Если же выпадает решка, то ее будят, сразу делая второй укол, и она забывает о том, что просыпалась, а после этого вновь пробуждают лишь на второй день. После полного пробуждения "красавице" неизвестно, в какой день она открыла глаза, или какова вероятность того, что монета упала решкой. По первому варианту решения вероятность выпадения решки (или орла) составляет 1/2. Суть второго варианта заключается в том, что, если проводить эксперимент 1000 раз, то в случае с орлом "красавицу" будут будить 500 раз, а с редкой - 1000. Теперь уже вероятность выпадения решки составляет 2/3.

Формулировка

Наиболее популярной является задача с дополнительным условием № 6 из таблицы - участнику игры заранее известны следующие правила:

  • автомобиль равновероятно размещен за любой из 3 дверей;
  • ведущий в любом случае обязан открыть дверь с козой и предложить игроку изменить выбор, но только не дверь, которую выбрал игрок;
  • если у ведущего есть выбор, какую из 2 дверей открыть, он выбирает любую из них с одинаковой вероятностью.

В нижеследующем тексте обсуждается задача Монти Холла именно в этой формулировке.

Разбор

При решении этой задачи обычно рассуждают примерно так: ведущий всегда в итоге убирает одну проигрышную дверь, и тогда вероятности появления автомобиля за двумя не открытыми становятся равны 1/2, вне зависимости от первоначального выбора.

Вся суть в том, что своим первоначальным выбором участник делит двери: выбранная A и две другие - B и C . Вероятность того, что автомобиль находится за выбранной дверью = 1/3, того, что за другими = 2/3.

Для каждой из оставшихся дверей сложившаяся ситуация описывается так:

P(B) = 2/3*1/2 = 1/3

P(C) = 2/3*1/2 = 1/3

Где 1/2 - условная вероятность нахождения автомобиля именно за данной дверью при условии, что автомобиль не за дверью, выбранной игроком.

Ведущий, открывая одну из оставшихся дверей, всегда проигрышную, сообщает тем самым игроку ровно 1 бит информации и меняет условные вероятности для B и C соответственно на "1" и "0".

В результате выражения принимают вид:

P(B) = 2/3*1 = 2/3

Таким образом, участнику следует изменить свой первоначальный выбор - в этом случае вероятность его выигрыша будет равна 2/3.

Одним из простейших объяснений является следующее: если вы меняете дверь после действий ведущего, то вы выигрываете, если изначально выбрали проигрышную дверь (тогда ведущий откроет вторую проигрышную и вам останется поменять свой выбор чтобы победить). А изначально выбрать проигрышную дверь можно 2 способами (вероятность 2/3), т.е. если вы меняете дверь, вы выигрываете с вероятностью 2/3.

Этот вывод противоречит интуитивному восприятию ситуации большинством людей , поэтому описанная задача и называется парадоксом Монти Холла , т.е. парадоксом в бытовом смысле.

А интуитивное восприятие таково: открывая дверь с козой, ведущий ставит перед игроком новую задачу, никак не связанную с предыдущим выбором - ведь коза за открытой дверью окажется независимо от того, выбрал игрок перед этим козу или автомобиль. После того, как третья дверь открыта, игроку предстоит сделать выбор заново - и выбрать либо ту же дверь, которую он выбрал раньше, либо другую. То есть, при этом он не меняет свой предыдущий выбор, а делает новый. Математическое же решение рассматривает две последовательные задачи ведущего, как связанные друг с другом.

Однако следует брать во внимание тот фактор из условия, что ведущий откроет дверь с козой именно из двух оставшихся, а не дверь, выбранную игроком. Следовательно, оставшаяся дверь имеет больше шансов на автомобиль, так как она не была выбрана ведущим. Если рассмотреть тот случай, когда ведущий, зная, что за выбранной игроком дверью находится коза, все же откроет эту дверь, этим самым он нарочно уменьшит шансы игрока выбрать правильную дверь, т.к. вероятность правильного выбора будет уже 1/2. Но подобного рода игра будет уже по другим правилам.

Дадим еще одно объяснение. Предположим, что вы играете по описанной выше системе, т.е. из двух оставшихся дверей вы всегда выбираете дверь, отличную от вашего первоначального выбора. В каком случае вы проиграете? Проигрыш наступит тогда, и только тогда, когда с самого начала вы выбрали дверь, за которой находится автомобиль, ибо впоследствии вы неизбежно перемените свое решение в пользу двери с козой, во всех остальных случаях вы выиграете, т.е., если с самого начала ошиблись с выбором двери. Но вероятность с самого начала выбрать дверь с козой 2/3, вот и получается, что для победы нужна ошибка, вероятность которой в два раза больше правильного выбора.

Упоминания

  • В фильме Двадцать одно преподаватель, Мики Роса, предлагает главному герою, Бену, решить задачу: за тремя дверьми два самоката и один автомобиль, необходимо угадать дверь с автомобилем. После первого выбора Мики предлагает изменить выбор. Бен соглашается и математически аргументирует свое решение. Так он непроизвольно проходит тест в команду Мики.
  • В романе Сергея Лукьяненко «Недотёпа » главные герои при помощи такого приёма выигрывают карету и возможность продолжить своё путешествие.
  • В телесериале «4исла » (13 эпизод 1 сезона «Man Hunt») один из главных героев, Чарли Эппс, на популярной лекции по математике объясняет парадокс Монти Холла, наглядно иллюстрируя его с помощью маркерных досок, на обратных сторонах которых нарисованы козы и автомобиль. Чарли действительно находит автомобиль, изменив выбор. Однако следует отметить, что он проводит всего один эксперимент, в то время как преимущество стратегии смены выбора является статистическим, и для корректной иллюстрации следует проводить серию экспериментов.
  • Парадокс Монти Холла обсуждается в дневнике героя повести Марка Хэддона «Загадочное ночное убийство собаки».
  • Парадокс Монти Холла проверялся Разрушителями Легенд

См. также

  • Парадокс Бертрана (англ.)

Ссылки

  • Интерактивный прототип: для тех, кто хочет надурить (генерация происходит после первого выбора)
  • Интерактивный прототип: реальный прототип игры (генерация карточек происходит до выбора, работа прототипа прозрачна)
  • Объясняющий видеоролик на сайте Smart Videos .ru
  • Weisstein, Eric W. Парадокс Монти Холла (англ.) на сайте Wolfram MathWorld .
  • Парадокс Монти Холла на сайте телешоу Let’s Make a deal
  • Отрывок из книги С.Лукьяненко , в котором используется парадокс Монти Холла
  • Ещё одно решение по Байесу Ещё одно решение по Байесу на форуме Новосибирского Государственного Университета

Литература

  • Гмурман В.Е. Теория вероятностей и математическая статистика, - М .: Высшее образование. 2005
  • Gnedin, Sasha "The Mondee Gills Game." журнал The Mathematical Intelligencer , 2011 http://www.springerlink.com/content/8402812734520774/fulltext.pdf
  • Parade Magazine от 17 февраля .
  • vos Savant, Marilyn. Колонка «Ask Marilyn», журнал Parade Magazine от 26 февраля .
  • Bapeswara Rao, V. V. and Rao, M. Bhaskara. «A three-door game show and some of its variants». Журнал The Mathematical Scientist , 1992, № 2.
  • Tijms, Henk. Understanding Probability, Chance Rules in Everyday Life . Cambridge University Press, New York, 2004. (ISBN 0-521-54036-4)

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Парадокс Монти Холла" в других словарях:

    В поисках автомобиля, игрок выбирает дверь 1. Тогда ведущий открывает 3 ю дверь, за которой находится коза, и предлагает игроку изменить свой выбор на дверь 2. Стоит ли ему это делать? Парадокс Монти Холла одна из известных задач теории… … Википедия

    - (Парадокс галстуков) известный парадокс, похожий на задачу о двух конвертах, также демонстрирующий особенности субъективного восприятия теории вероятностей. Суть парадокса: двое мужчин дарят друг другу на Рождество галстуки, купленные их… … Википедия

Люди привыкли считать правильным то, что представляется очевидным. Оттого они часто попадают впросак, неверно оценив ситуацию, доверившись своей интуиции и не уделив время для того, чтобы критически осмыслить свой выбор и его последствия.

Монти наглядная иллюстрация неспособности человека взвесить свои шансы на успех в условиях выбора благоприятного исхода при наличии более чем одного неблагоприятного.

Формулировка парадокса Монти Холла

Итак, что же это за зверь такой? О чем, собственно, речь? Самым известным примером парадокса Монти Холла выступает телешоу, популярное в Америке середины прошлого века под названием «Давай заключим пари!». Кстати, именно благодаря ведущему этой викторины впоследствии и получил свое имя парадокс Монти Холла.

Игра состояла в следующем: участнику показывали три двери, с виду совершенно одинаковые. Однако за одной из них игрока ждал дорогой новый автомобиль, а вот за двумя другими в нетерпении томилось по козе. Как это обычно бывает в случае телевикторин, что находилось за выбранной конкурсантом дверью, то и становилось его выигрышем.

В чем же состоит хитрость?

Но не все так просто. После того как выбор был сделан, ведущий, зная, где сокрыт главный приз, открывал одну из оставшихся двух дверей (конечно, ту самую, за которой притаилось парнокопытное), а затем спрашивал игрока, не желает ли тот изменить свое решение.

Парадокс Монти Холла, сформулированный учеными в 1990 году, заключается в том, что, вопреки интуиции, подсказывающей, что нет никакой разницы в принятии на основании вопроса ведущего решения, нужно согласиться изменить свой выбор. Если хочется заполучить отличную машину, естественно.

Как это работает?

Причин, по которым людям не захочется отказываться от своего выбора, несколько. Интуиция и простая (но неверная) логика говорят, что от этого решения ничего не зависит. Более того, далеко не каждому захочется идти на поводу у другого - это же самая настоящая манипуляция, разве не так? Нет, не так. Но если бы все было сразу интуитивно понятно, то и не стали бы называть. Нет ничего странного в том, чтобы сомневаться. Когда данную головоломку впервые опубликовали в одном из крупных журналов, тысячи читателей, в том числе и признанные математики, прислали в редакцию письма, в которых утверждали, что напечатанный в номере ответ не соответствует действительности. Если существование теории вероятностей не было новостью для человека, попавшего на шоу, то возможно, он бы смог разгадать эту задачу. И тем самым увеличить шансы на победу. На самом деле объяснение парадокса Монти Холла сводится к несложной математике.

Объяснение первое, посложнее

Вероятность того, что приз находится за той дверью, которая была избрана изначально - один из трех. Шанс же обнаружить его за одной из двух оставшихся равен двум из трех. Логично, не так ли? Теперь, после того как одна из этих дверей оказывается открытой, и за ней обнаруживается коза, во втором множестве (том, которое соответствует 2/3 шанса на успех) остается только один вариант. Значение этого варианта остается прежним, и оно равно двум из трех. Таким образом, становится очевидно, что, изменив свое решение, игрок увеличит вероятность выигрыша вдвое.

Объяснение номер два, попроще

После такого трактования решения многие все равно настаивают на том, что смысла в этом выборе нет, ведь варианта всего два и один из них точно выигрышный, а другой однозначно ведет к поражению.

Но у теории вероятностей на данную проблему свой взгляд. И это становится еще яснее, если представить себе, что дверей изначально не три, а, скажем, сто. В таком случае возможность угадать, где находится приз, с первого раза составляет всего лишь один к девяносто девяти. Теперь участник делает свой выбор, а Монти исключает девяносто восемь дверей с козами, оставляя лишь две, одну из которых выбрал игрок. Таким образом, вариант, выбранный изначально, сохраняет шансы на выигрыш равные 1/100, а вторая предложенная возможность - 99/100. Выбор должен быть очевиден.

Существуют ли опровержения?

Ответ прост: нет. Ни одного достаточно обоснованного опровержения парадокса Монти Холла не существует. Все "разоблачения", которые можно обнаружить в Сети, сводятся к непониманию принципов математики и логики.

Для каждого, кто хорошо знаком с математическими принципами, неслучайность вероятностей абсолютно очевидна. Не соглашаться с ними может только тот, кто не понимает, как устроена логика. Если все вышесказанное до сих пор звучит неубедительно - обоснование парадокса было проверено и подтверждено на известной передаче «Разрушители легенд», а кому еще поверить, как не им?

Возможность убедиться наглядно

Хорошо, пусть все это звучит убедительно. Но ведь это только теория, можно ли как-то посмотреть на работу этого принципа в действии, а не только на словах? Во-первых, живых людей никто не отменял. Найдите напарника, который возьмет на себя роль ведущего и поможет разыграть вышеописанный алгоритм в реальности. Для удобства можно взять коробки, ящики или вовсе рисовать на бумаге. Повторив процесс несколько десятков раз, сравните число выигрышей в случае смены первоначального выбора с тем, сколько побед принесло упрямство, и все станет ясно. А можно поступить еще проще и воспользоваться Интернетом. В Сети существует немало симуляторов парадокса Монти Холла, в них можно проверить все самому и без лишнего реквизита.

Какой толк от этих знаний?

Может показаться, что это просто очередная головоломка, призванная напрячь мозги, и служит она лишь развлекательным целям. Однако свое практическое применение парадокс Монти Холла находит в первую очередь в азартных играх и различных тотализаторах. Тем, кто имеет большой опыт, прекрасно известны распространенные стратегии увеличения шансов на обнаружение валуйной ставки (от английского слова value, что буквально означает "ценность" - такой прогноз, который сбудется с большей вероятностью, чем это было оценено букмекерами). И одна из таких стратегий напрямую задействует парадокс Монти Холла.

Пример в работе с тотализатором

Спортивный пример будет мало отличаться от классического. Допустим, есть три команды из первого дивизиона. В три ближайших дня каждая из этих команд должна сыграть по одному решающему матчу. Та из них, что по итогам матча наберет больше очков, чем две другие, останется в первом дивизионе, остальные же будут вынуждены его покинуть. Предложение букмекера простое: нужно поставить на сохранение позиций одного из этих футбольных клубов, при этом коэффициенты ставок равны.

Для удобства принимаются такие условия, при которых соперники участвующих в выборе клубов примерно равны по силе. Таким образом, однозначно определить фаворита до начала игр не получится.

Тут нужно вспомнить историю про коз и автомобиль. Каждая из команд имеет шанс остаться на своем месте в одном случае из трех. Выбирается любая из них, на нее делается ставка. Пусть это будет "Балтика". По результатам первого дня один из клубов проигрывает, а двоим сыграть еще только предстоит. Это та самая "Балтика" и, скажем, "Шинник".

Большинство сохранит свою первоначальную ставку - в первом дивизионе останется "Балтика". Но следует помнить, что ее шансы остались прежними, а вот шансы "Шинника" удвоились. Поэтому логично сделать еще одну ставку, более крупную, на победу "Шинника".

Наступает следующий день, и матч с участием "Балтики" проходит вничью. Следующим играет "Шинник", и его игра заканчивается победой со счетом 3:0. Выходит, что именно он останется в первом дивизионе. Поэтому, хоть первая ставка на "Балтику" и теряется, но эту потерю перекрывает прибыль на новой ставке на "Шинник".

Можно предположить, и большинство так и поступит, что выигрыш "Шинника" - всего лишь случайность. На самом же деле принимать вероятность за случайность - крупнейшая ошибка для человека, участвующего в спортивных тотализаторах. Ведь профессионал всегда скажет, что любая вероятность выражается прежде всего в четких математических закономерностях. Если знать основы этого подхода и все связанные с ним нюансы, то риски потери денег сведутся к минимуму.

Польза в прогнозировании экономических процессов

Итак, в ставках на спорт парадокс Монти Холла знать просто необходимо. Но одними тотализаторами область его применения не ограничивается. Теория вероятностей всегда тесно связана со статистикой, оттого в политике и экономике понимание принципов парадокса не менее важно.

В условиях экономической неопределенности, с которой часто имеют дело аналитики, нужно помнить следующий проистекающий из решения задачи вывод: не обязательно точно знать единственно верное решение. Шансы на удачный прогноз всегда повышаются, если знать, чего точно не произойдет. Собственно, это и есть самый полезный вывод из парадокса Монти Холла.

Когда мир стоит на пороге экономических потрясений, политики всегда стараются угадать нужный вариант действий, чтобы максимально снизить последствия кризиса. Возвращаясь к предыдущим примерам, в сфере экономики задачу можно описать так: перед руководителями стран есть три двери. Одна ведет к гиперинфляции, вторая к дефляции, а третья - к заветному умеренному росту экономики. Но как нащупать верный ответ?

Политики утверждают, что те или иные их действия приведут к увеличению рабочих мест и росту экономики. Но ведущие экономисты, опытные люди, среди которых даже лауреаты Нобелевской премии, наглядно демонстрируют им, что один из этих вариантов точно не приведет к желаемому результату. Станут ли после этого политики менять свой выбор? Крайне маловероятно, так как в этом отношении они мало чем отличаются от тех же участников телешоу. Поэтому вероятность ошибки только увеличится при увеличении числа советчиков.

Исчерпывается ли этим информация по теме?

На самом деле до сих пор здесь рассматривался только "классический" вариант парадокса, то есть та ситуация, при которой ведущий точно знает, за какой из дверей находится приз, и открывает только дверь с козой. Но существуют и другие механизмы поведения ведущего, в зависимости от которых принцип работы алгоритма и результат его выполнения будут отличаться.

Влияние поведения ведущего на парадокс

Итак, что же может сделать ведущий, чтобы изменить ход событий? Допустим разные варианты.

Так называемый "Дьявольский Монти" - ситуация, в которой ведущий всегда предложит игроку поменять свой выбор при условии, что он был изначально верным. В этом случае изменение решения всегда приведет к поражению.

Напротив, "Ангельским Монти" называется похожий принцип поведения, но в том случае, если выбор игрока был изначально неверным. Логично, что в такой ситуации изменение решения приведет к победе.

Если же ведущий открывает двери наугад, не имея представления о том, что скрыто за каждой из них, то шансы выиграть всегда будут равны пятидесяти процентам. При этом за открытой ведущим дверью может оказаться и автомобиль.

Ведущий может 100 % открыть дверь с козой, если игрок выбрал автомобиль, и с 50 % вероятностью в случае, если игрок выбрал козу. При таком алгоритме действий, если игрок изменит выбор, то всегда будет в выигрыше в одном случае из двух.

Когда игра повторяется вновь и вновь, а вероятность того, что выигрышной окажется определенная дверь, всегда произвольна (так же как и то, какую дверь откроет ведущий, при этом ему известно, где скрывается автомобиль, и он всегда открывает дверь с козой и предлагает изменить выбор) - шанс победить всегда будет равен одному из трех. Это называется равновесием Нэша.

Равно как и в таком же случае, но при условии, что ведущий не обязан открывать одну из дверей вовсе — вероятность победы будет все так же равна 1/3.

В то время как классическая схема проверяется довольно легко, эксперименты с другими возможными алгоритмами поведения ведущего произвести на практике намного сложнее. Но при должной дотошности экспериментатора возможно и такое.

И все же, к чему все это?

Понимание механизмов действий любых логических парадоксов очень полезно для человека, его мозга и осознания того, как на самом деле может быть устроен мир, насколько его устройство может отличаться от привычного представления индивида о нем.

Чем больше человек знает о том, как работает то, что окружает его в повседневной жизни и о чем он вовсе не привык задумываться, тем лучше работает его сознание, и тем эффективнее он может быть в своих поступках и устремлениях.

В декабре 1963 года на американском телеканале NBC впервые вышла программа Let’s Make a Deal («Заключим сделку!»), в которой участники, выбранные из зрителей в студии, торговались друг с другом и с ведущим, играли в небольшие игры или просто угадывали ответ на вопрос. В конце передачи участники могли сыграть в «сделку дня». Перед ними было три двери, про которые было известно, что за одной из них - Главный Приз (например, автомобиль), а за двумя другими - менее ценные или вовсе абсурдные подарки (например, живые козы). После того как игрок делал свой выбор, ведущий программы Монти Холл (Monty Hall) открывал одну из двух оставшихся дверей, показывая, что за ней Приза нет и давая участнику порадоваться тому, что он сохраняет шансы на выигрыш.

В 1975 году учёный из Калифорнийского университета Стив Селвин (Steve Selvin) задался вопросом о том, что будет, если в этот момент, после открытия двери без Приза, предложить участнику поменять свой выбор. Изменятся ли в этом случае шансы игрока получить Приз, а если да, то в какую сторону? Он отправил соответствующий вопрос в виде задачи в журнал The American Statistician («Американский статистик»), а также - самому Монти Холлу, который дал на него довольно любопытный ответ. Несмотря на этот ответ (а может, и благодаря ему) задача получила распространение под именем «задача Монти Холла».

Наиболее распространённая формулировка этой задачи, опубликованная в 1990 году в журнале Parade Magazine, звучит следующим образом:

«Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трёх дверей. За одной из дверей находится автомобиль, за двумя другими дверями - козы. Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где - козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас, не желаете ли вы изменить свой выбор и выбрать дверь номер 2. Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор?»


После публикации немедленно выяснилось, что задача сформулирована некорректно: не все условия оговорены. Например, ведущий может придерживаться стратегии «адский Монти»: предлагать сменить выбор тогда и только тогда, когда игрок первым ходом выбрал автомобиль. Очевидно, что смена первоначального выбора будет вести в такой ситуации к гарантированному проигрышу.

Наиболее популярной является задача с дополнительным условием - участнику игры заранее известны следующие правила:

  1. автомобиль равновероятно размещён за любой из 3 дверей;
  2. ведущий в любом случае обязан открыть дверь с козой (но не ту, которую выбрал игрок) и предложить игроку изменить выбор;
  3. если у ведущего есть выбор, какую из двух дверей открыть, он выбирает любую из них с одинаковой вероятностью.
Подсказка

Попробуйте рассмотреть людей, выбравших в одном и том же случае (то есть когда Приз находится, например, за дверью №1) разные двери. Кто будет в выигрыше от изменения своего выбора, а кто - нет?

Решение

Как и было предложено в подсказке, рассмотрим людей, сделавших разный выбор. Предположим, что Приз находится за дверью №1, а за дверями №2 и №3 - козы. Пусть у нас есть шесть человек, причём каждую дверь выбрали по два человека, и из каждой пары один впоследствии изменил решение, а другой - нет.

Заметим, что выбравшим дверь №1 Ведущий откроет одну из двух дверей на свой вкус, при этом, независимо от этого, Автомобиль получит тот, кто не изменит своего выбора, изменивший же свой первоначальный выбор останется без Приза. Теперь посмотрим на выбравших двери №2 и №3. Поскольку за дверью №1 стоит Автомобиль, открыть её Ведущий не может, что не оставляет ему выбора - он открывает им двери №3 и №2 соответственно. При этом изменивший решение в каждой паре в результате выберет Приз, а не изменивший - останется ни с чем. Таким образом, из троих людей, изменивших решения, двое получат Приз, а один - козу, в то время как из троих, оставивших свой изначальный выбор неизменным, Приз достанется лишь одному.

Необходимо отметить, что если бы Автомобиль оказался за дверью №2 или №3, результат был бы тем же, изменились бы лишь конкретные победители. Таким образом, предполагая, что изначально каждая дверь выбирается с равной вероятностью, мы получаем, что меняющие свой выбор выигрывают Приз в два раза чаще, то есть вероятность выигрыша в этом случае больше.

Посмотрим на эту задачу с точки зрения математической теории вероятностей. Будем предполагать, что вероятность изначального выбора каждой из дверей одинакова, равно как и вероятность нахождения за каждой из дверей Автомобиля. Кроме того, полезно сделать оговорку, что Ведущий, когда он может открыть две двери, выбирает каждую из них с равной вероятностью. Тогда окажется, что после первого принятия решения вероятность того, что Приз за выбранной дверью, равна 1/3, в то время как вероятность того, что он - за одной из двух других дверей, равна 2/3. При этом, после того как Ведущий открыл одну из двух «невыбранных» дверей, вся вероятность 2/3 приходится лишь на одну из оставшихся дверей, создавая тем самым основание для смены решения, которая увеличит вероятность выигрыша в 2 раза. Что, конечно, его нисколько не гарантирует в одном конкретном случае, но приведёт к более удачным результатам в случае многократного повторения эксперимента.

Послесловие

Задача Монти Холла - это не первая из известных формулировок данной проблемы. В частности, в 1959 году Мартин Гарднер опубликовал в журнале Scientific American аналогичную задачу «о трёх узниках» (Three Prisoners problem) со следующей формулировкой: «Из трёх узников одного должны помиловать, а двоих - казнить. Узник A уговаривает стражника назвать ему имя того из двух других, которого казнят (любого, если казнят обоих), после чего, получив имя B, считает, что вероятность его собственного спасения стала не 1/3, а 1/2. В то же время, узник C утверждает, что это вероятность его спасения стала 2/3, а для A ничего не изменилось. Кто из них прав?»

Однако и Гарднер был не первым, так как ещё в 1889 году в своём «Исчислении вероятностей» французский математик Жозеф Бертран (не путать с англичанином Бертраном Расселом!) предлагает похожую задачу (см. Bertrand"s box paradox): «Есть три ящика, в каждом из которых лежат две монеты: две золотых в первом, две серебряных во втором, и две разных - в третьем. Из наугад выбранного ящика наугад вытащили монету, которая оказалась золотой. Какова вероятность того, что оставшаяся монета в ящике - золотая?»

Если понять решения всех трёх задач, легко заметить схожесть их идей; математически же все их объединяет понятие условной вероятности, то есть вероятности события A, если известно, что событие B произошло. Простейший пример: вероятность того, что на обычном игральном кубике выпала единица, равна 1/6; однако если известно, что выпавшее число - нечётно, то вероятность того, что это - единица, будет уже 1/3. Задача Монти Холла, как и две другие приведённые задачи, показывают, что обращаться с условными вероятностями нужно аккуратно.

Эти задачи также нередко называют парадоксами: парадокс Монти Холла, парадокс ящиков Бертрана (последний не следует путать с настоящим парадоксом Бертрана, приведённым в той же книге, который доказывал неоднозначность существовавшего на тот момент понятия вероятности) - что подразумевает некоторое противоречие (например, в «парадоксе Лжеца» фраза «это утверждение - ложно» противоречит закону исключённого третьего). В данном случае, однако, никакого противоречия со строгими утверждениями нет. Зато есть явное противоречие с «общественным мнением» или просто «очевидным решением» задачи. Действительно, большинство людей, глядя на задачу, полагают, что после открытия одной из дверей вероятность нахождения Приза за любой из двух оставшихся закрытыми равна 1/2. Тем самым они утверждают, что нет разницы, соглашаться или не соглашаться изменить своё решение. Более того, многие люди с трудом осознают ответ, отличный от этого, даже после того, как им было рассказано подробное решение.

Ответ Монти Холла Стиву Селвину

Г-ну Стиву Селвину,
доценту биостатистики,
Калифорнийский университет, Беркли.

Уважаемый Стив,

Благодарю Вас за то, что прислали мне задачу из «Американского статистика».

Хотя я и не изучал статистику в университете, я знаю, что цифры всегда можно использовать в свою пользу, если бы я хотел ими манипулировать. Ваши рассуждения не учитывают одного существенного обстоятельства: после того как первый ящик оказывается пустым, участник уже не может поменять свой выбор. Так что вероятности остаются теми же: один из трёх, не так ли? Ну и, конечно, после того как один из ящиков оказывается пустым, шансы не становятся 50 на 50, а остаются теми же - один из трёх. Участнику только кажется, что, избавившись от одного ящика, он получает больше шансов. Вовсе нет. Два к одному против него, как было, так и осталось. И если Вы вдруг придёте ко мне на шоу, правила останутся теми же и для Вас: никакой смены ящиков после выбора.


Всем нам знакома ситуация, когда мы вместо трезвого расчета полагались на свою интуицию. Ведь нужно признать, что далеко не всегда можно все просчитать прежде чем сделать выбор. И как бы не лукавили люди, которые привыкли делать свой выбор только после тщательного анализа, им ни один раз это приходилось делать по принципу «наверное так». Одной из причин подобного действия может быть банальное отсутствие необходимого времени для оценки ситуации.

При этом выбор ждет сложившаяся ситуация прямо сейчас, и не позволяет уйти от ответа или действия. Но еще более каверзные ситуации для нас, которые в буквальном смысле вызывает судорогу мозга, — это разрушение уверенности в правильности выбора или в его вероятном превосходстве над иными вариантами, основанных на логических умозаключениях. На этом основаны все существующие парадоксы.

Парадокс в игре телешоу «Let’s Make a Deal»

Один из парадоксов, который вызывает жаркие споры среди любителей головоломок, называется парадоксом Монти Холла. Назван он в честь ведущего телешоу в США под названием «Let’s Make a Deal». На телешоу ведущий предлагает открыть одну из трех дверей, где в качестве приза находится автомобиль, в то время когда за другими двумя находятся по одной козе.

Участник игры делает свой выбор, но ведущий, зная где находится авто, открывает при этом не ту дверь, которую указал игрок, а другую, в которой находится коза и предлагает сменить первоначальный выбор игрока. Для дальнейшего разбора мы принимаем именно этот вариант поведения ведущего, хотя на самом деле он может периодически меняться. Другие варианты сценария развития мы просто перечислим ниже в статье.

В чем суть парадокса?

Еще раз по пунктам обозначим условия и изменим объекты игры для разнообразия на свои.

Участник игры находитесь в помещении с тремя банковскими ячейками. В одной из трех ячеек золотой слиток золота, в других двух по одной монете номиналом в 1 копейку СССР.

Итак, участник перед выбором и условия игры следующие:

  1. Участник может выбрать лишь одну из трех ячеек.
  2. Банкир знает изначально расположение слитка.
  3. Банкир всегда открывает ячейку с монетой, отличную от выбора игрока, и предлагает поменять выбор игроку.
  4. Игрок может в свою очередь поменять свой выбор или оставить первоначальный.

Что говорит интуиция?

Парадокс состоит в том, что для большинства людей, которые привыкли мыслить логически, шансы на выигрыш в случае смены своего первоначального выбора 50 на 50. Ведь, после того, как банкир открывает другую ячейку с монеткой, отличную от первоначального выбора игрока, остаются 2 ячейки, в одной из которых слиток золота, а в другой монетка. Игрок выигрывает слиток, если принимает предложение банкира сменить ячейку при условии, если в первоначально выбранной игроком ячейке не было слитка. И наоборот при данном условии — проигрывает, в случае если он откажется принять предложение.

Как подсказываем здравый смысл вероятность выбора слитка и выигрыша в таком случае 1/2. Но на самом деле ситуация иная! «Но как же так, здесь же все очевидно?» — спросите вы. Допустим вы выбрали ячейку № 1. Интуитивно да, неважно какой был у вас выбор первоначально, в конечном итоге у вас по факту перед выбором монета и слиток. И если изначально у вас была вероятность получения приза 1/3 , то в конечном итоге при открытии одной ячейки банкиром вы получаете вероятность 1/2. Казалось, вероятность увеличилась с 1/3 до 1/2. При внимательном разборе игры выясняется, что при смене решения вероятность увеличивается до 2/3 вместо интуитивных 1/2. Давайте рассмотрим за счет чего это происходит.

В отличие от интуитивного уровня, где наше сознание рассматривает событие после смены ячейки как нечто отдельное и забывает о первоначальном выборе, математика не разрывает эти два события, а наоборот сохраняет цепочку событий от начала до конца. Итак, как мы ранее и говорили, шансы на выигрыш при попадании сходу на слиток у нас 1/3, а вероятность, что мы выберем ячейку с монетой 2/3 (поскольку у нас есть один слиток и две монеты).

  1. Выбираем изначально банковскую ячейку со слитком — вероятность 1/3.
    • Если игрок изменяет свой выбор, принимая предложение банкира, — он проигрывает.
    • Если игрок не изменяет выбор, не принимая предложение банкира, — он выигрывает.
  2. Выбираем с первого раза банковскую ячейку с в монеткой — вероятность 2/3.
    • Если игрок поменяет свой выбор — выиграл.
    • Если игрок не изменяет выбор — проиграл.

Итак, для того, чтобы игрок ушел из банка со слитком золота в кармане, он должен выбрать изгначально проигрышную позицию с монеткой (вероятность 1/3), и после этого принять предложение банкира сменить ячейку.

Для того, чтобы понять данный парадокс и вырваться из оков шаблона первоначального выбора и оставшихся ячеек, давайте представим поведение игрока ровным счетом наоборот. Перед тем как банкир предложит ячейку для выбора, игрок мысленно точно определяется с тем, что он меняет свой выбор, и только после этого для него следует событие открытия лишней двери. Почему нет? Ведь открытая дверь не дает для него большей информации в такой логической последовательности. На первом этапе времени игрок разделяет ячейки на две разные области: первая — область с одной ячейкой с его первоначальным выбором, вторая с двумя оставшимися ячейками. Далее игроку предстоит сделать выбор между двумя областями. Вероятность достать из ячейки золотой слиток из первой области 1/3, из второй 2/3. Выбор следует за второй областью, в которой он может открыть две ячейки, первую откроет банкир, вторую он сам.

Существует еще более понятное объяснение парадокса Монти Холла. Для этого необходимо поменять формулировку задания. Банкир дает понять, что в одной из трех банковских ячеек находится золотой слиток. В первом случае он предлагает открыть одну из трех ячеек, а во втором — одновременно две. Что выберет игрок? Ну конечно сразу две, за счет повышения вероятности в два раза. И тот момент, когда банкир открыл ячейку с монеткой, это игроку на самом деле никак не помогает и не препятствует выбору, ведь банкир в любом случае покажет эту ячейку с монеткой, поэтому игрок может попросту игнорировать это действие. Со стороны игрока можно лишь только поблагодарить банкира за то, что он ему облегчил жизнь, и вместо двух ему пришлось открыть одну ячейку. Ну и окончательно можно избавится от синдрома парадокса если поставить себя на место банкира, который изначально знает, что игрок в двух из трех случаев указывает на неправильную дверь. Для банкира парадокс отсутствует как таковой, ведь он точно в такой инверсии событий уверен, что в случае смены событий игрок забирает золотой слиточек.

Парадокс Монти Холла явно не позволяет быть в выигрыше консерваторам, которые железобетонно стоят на своем первоначальном выборе и теряют свой шанс роста вероятности. Для консерваторов он так и останется 1/3. Для бдительных и рассудительных людей он вырастает до вышеуказанных 2/3.

Все приведенные утверждения актуальны лишь в соблюдении изначально оговоренных условий.

Что если увеличить количество ячеек?

Что если увеличить количество ячеек? Допустим вместо трех их будет 50. Золотой слиток будет лежать лишь только в одной ячейке, а в остальных 49 — монеты. Соответственно в отличии от классического случая вероятность попадания с ходу в цель 1/50 или 2% вместо 1/3, в то время как вероятность выбора ячейки с монетой составляет 98%. Далее ситуация развивается, как и в прежнем случае. Банкир предлагает открыть любую из 50 ячеек, участник выбирает. Допустим, игрок открывает ячейку под порядковым номеров 49. Банкир в свою очередь, как и в классическом варианте, не спешит выполнять желание игрока и открывает другие 48 ячеек с монетами и предлагает поменять свой выбор на оставшуюся под номером 50.

Здесь важно понимать, что банкир открывает именно 48 ячеек, а не 30, и оставляет при этом 2, включая выбранную игроком. Именно такой выбор позволяет парадоксу идти в разрез с интуицией. Как и в случае с классическим вариантом, открытие банкиром 48 ячеек оставляет только один единственный альтернативный вариант для выбора. Случай варианта меньшего открытия ячеек не позволяет поставить в один ряд задачу с классикой и ощутить парадокс.

Но раз уж мы и коснулись такого варианта, то давайте предположим, что банкир оставляет не одну, кроме выбранной игроком, а несколько ячеек. Представлено, как и прежде, 50 ячеек. Банкир после выбора игрока открывает только одну ячейку, оставляя при этом закрытыми 48 ячеек, включая выбранную игроком. Вероятность выбора слитка с первого раза 1/50. В сумме вероятность нахождения слитка в остальных ячейках 49/50, которая в свою очередь раскидывается не на 49, а на 48 ячеек. Не сложно посчитать, что вероятность нахождения слитка в таком варианте равна (49/50)/48=49/2900 . Вероятность пусть не на много, но все равно выше, чем 1/50 приблизительно на 1%.

Как мы и упоминали в самом начале ведущий Монти Холл в классическом сценарии игры с дверьми, козами и призовым авто может изменять условия игры и вместе с нем и вероятность выигрыша.

Математика парадокса

Могут ли математические формулы доказать увеличение вероятности при смене выбора?
Представим цепочку событий в виде множества, разделенного на две части, первую часть примем за X – это выбор на первом этапе ячейки сейфа игроком; и второе множество Y — оставшиеся две остальных ячейки. Вероятность (В) выигрыша для ячеек 2 и 3 можно выразить с помощью формул.

В(2) = 1/2 * 2/3 = 1/3
В(3) = 1/2 * 2/3= 1/3

Где 1/2 это вероятность, с которой банкир откроет ячейку 2 и 3 при условии, если игрок изначально выбрал ячейку без слитка.
Далее условная вероятность 1/2 при открытии банкиром ячейки с монетой изменяется на 1 и 0. Тогда формулы приобретают следующий вид:

В(2) = 0 * 2/3 = 0
B(3) = 1 * 2/3 = 1

Здесь мы наглядно видим, что вероятность выбора слитка в ячейке 3 — 2/3, а это чуть более 60 процентов.
Программист самого начального уровня может без труда проверить данный парадокс, написав программу, которая считает вероятность при смене выбора или наоборот и сверить результаты.

Объяснение парадокса в фильме 21 (Двадцать одно)

Наглядное разъяснение парадокса Монти Пола приводится в фильме «21» (Двадцать одно), режиссера Роберта Лукетича. Профессор Микки Роса на лекции приводит пример из шоу Let’s Make a Deal и задает вопрос о распределении вероятности у студента Бена Кэмпбелла (актер и певец Джеймс Энтони), который дает правильный расклад и тем самым удивляет преподавателя.

Самостоятельное изучение парадокса

Для людей, которые хотят проверить результат самостоятельно на деле, но не имеющих математического базиса, мы предлагаем самостоятельно смоделировать игру, в которой вы будете ведущим, а кто-то будет игроком. Можете задействовать в этой игре детей, которые будут выбирать конфеты или фантики от них в заранее приготовленных картонных коробочках. При каждом выборе обязательно фиксируйте результат для дальнейшего подсчета.