Какой самый прочный металл на земле. Какой металл самый твердый на земле

В мире есть много одинаковых по показателям твёрдости металлов, но не все они широко используются в промышленности. Причин тому может быть несколько: редкость и потому дороговизна или же радиоактивность, которая препятствует использованию в человеческих нуждах. Среди самых твёрдых металлов можно выделить 6 лидеров, покоривших мир своими особенностями.

Твёрдость металлов принято измерять по шкале Мооса. В основе метода измерения твёрдости – оценка устойчивости к царапинам другими металлами. Таким образом, было определено, что наивысшей твёрдостью обладают уран и вольфрам. Однако есть металлы, которые больше используются в разных сферах жизни, хоть их твердость и не наивысшая по шкале Мооса. Поэтому, раскрывая тему о самых твёрдых металлах, неправильно будет не упомянуть об известном титане, хроме, осмии и иридии.

На вопрос, какой самый твёрдый металл, любой человек, изучающий химию и физику в школе, ответит: «Титан». Конечно, существуют сплавы и даже самородки в чистом виде, которые превосходят его по прочности. Но среди используемых в быту и производстве титану нет равных.

Чистый титан впервые был получен в 1925 году и тогда же был объявлен самым твёрдым металлом на Земле. Его сразу стали активно использовать в абсолютно разных сферах производства – от деталей ракет и воздушного транспорта до зубных имплантатов. Заслугой такой популярности металла стали несколько его главных свойств: высокая механическая прочность, стойкость к коррозиям и высоким температурам и низкая плотность. По шкале твёрдости металлов Мооса титан обладает степенью 4.5, что не является самым высоким показателем. Однако его популярность и задействованность в различных отраслях делает его первым по твёрдости среди часто используемых.

Титан самый твёрдый среди часто используемых в производстве металлов

Детальнее про применение титана в промышленности. Данный метал имеет широкий спектр использования:

  • Авиационная промышленность – детали планерной части самолётов, газовые турбины, обшивки, силовые элементы, детали шасси, заклёпки и т.д;
  • Космическая техника – обшивки, детали;
  • Кораблестроение – обшивка судов, детали насосов и трубопроводов, навигационные приборы, турбинные двигатели, паровые котлы;
  • Машиностроение – конденсаторы турбин, трубы, износостойкие элементы;
  • Нефтегазовая промышленность – трубы для бурения, насосы, сосуды высокого давления;
  • Автостроение – в механизмах клапанов и выхлопных систем, передаточных валов, болтов, пружин;
  • Строительство – наружная и внутренняя обшивка зданий, кровельные материалы, лёгкие крепежные приспособления и даже памятники;
  • Медицина – хирургические инструменты, протезы, имплантаты, корпусы для кардиологических приборов;
  • Спорт – спортивный инвентарь, туристические принадлежности, детали для велосипедов.
  • Товары народного потребления – ювелирные украшения, декоративные изделия, садовой инвентарь, наручные часы, кухонная утварь, корпуса электроники и даже колокола, а также добавляют в состав красок, белил, пластика и бумаги.

Можно увидеть, что титан востребован в абсолютно разных сферах промышленности за счет его физико-химических свойств. Пусть он и не самый твёрдый металл в мире по шкале Мооса, изделия из него куда прочнее и легче стали, меньше изнашиваются и более стойкие к раздражителям.


Титан считается самым твердым среди активно потребляемых металлов

Самым твёрдым в своем натуральном виде считается металл голубовато-белого цвета – хром. Он был открыт еще в конце 18 века и с тех пор широко используется в производстве. По шкале Мооса твёрдость хрома составляет 5. И не зря – им можно резать стекло, а при соединении с железом он способен резать даже металл. Также хром активно применяется в металлургии – его добавляют в сталь, чтобы улучшить ее физические свойства. Спектр использования хрома весьма разнообразен. Из него изготавливают стволы огнестрельного оружия, медицинское и химическое технологическое оборудование, бытовые принадлежности – кухонная утварь, металлические части мебели и даже корпусы подводных лодок.


Наивысшая твёрдость в чистом виде - хром

Хром используют в различных сферах, например, для производства нержавеющей стали, или для покрытия поверхностей – хромирования (техника, автомобили, детали, посуда). Часто этот метал используют при изготовлении стволов огнестрельного оружия. Также нередко этот металл можно встретить при производстве красителей и пигментов. Удивительным может показаться еще одна сфера его использования – это производство диетических добавок, а в создании технологического оборудования для химических и медицинских лабораторий без хрома никак нельзя обойтись.

Осмий и иридий – представители металлов платиновой группы, имеют почти одинаковую плотность. В своем чистом виде в природе встречаются невероятно редко, а чаще всего – в сплаве друг с другом. Иридий по природе своей обладает высокой твердостью, из-за чего плохо поддается металлообработке, как механической, так и химической.


Осмий и иридий обладают наивысшей плотностью

Активно применять иридий в промышленности стали сравнительно недавно. Раньше его использовали с осторожностью, поскольку его физико-химические характеристики были изучены не до конца. Теперь иридий используют даже в изготовлении ювелирных изделий (в качестве инкрустаций или в сплаве с платиной), хирургических инструментов и деталей для сердечных стимуляторов. В медицине металл просто незаменим: его биопрепараты могут помочь побороть онкологию, а облучение его радиоактивным изотопом может остановить процесс роста раковых клеток.

Две трети добываемого в мире иридия уходит в химическую промышленность, а остальное распределяется между другими отраслями производства – напыления в металлургической индустрии, товарах народного использования (элементы перьевых ручек, ювелирные изделия), медицине при производстве электродов, элементов кардиостимуляторов и хирургических инструментов, а также для улучшения физико-химических и механических свойств металлов.


Твёрдость иридия по шкале Мосса – 5

Осмий – серебристо-белый металл с голубоватым отливом. Он был открыт позже иридия на год, а сейчас его нередко находят в железных метеоритах. Помимо высокой твёрдости, осмий отличается своей дороговизной – 1 грамм чистого металла оценивается в 10 тысяч долларов. Еще одной его особенностью считается его вес – 1 литр расплавленного осмия равен 10 литрам воды. Правда, ученые еще не нашли применения этому свойству.

Из-за редкости и высокой стоимости осмий задействуется только там, где никакой другой металл не может быть использован. Широкого применения ему так и не нашли, да и нет смысла в поисках, пока поставки металла не станут регулярными. Сейчас осмий используется для изготовления инструментов, требующих высокой точности. Изделия из него почти не изнашиваются и обладают значительной прочностью.


Показатель твёрдости осмия достигает 5.5

Один из наиболее знаменитых элементов, который является одним из самых твёрдых металлов в мире, – уран. Это металл светло-серого цвета, обладающий слабой радиоактивностью. Уран считается одним из самых тяжелых металлов – его удельный вес в 19 раз превышает вес воды. Он также обладает относительной пластичностью, ковкостью и гибкостью, парамагнитными свойствами. По шкале Мосса твёрдость металла составляет 6, что считается очень высоким показателем.

Раньше уран почти не использовался, а встречался только как рудный отход при добыче других металлов – радия и ванадия. На сегодняшний день уран добывается в месторождениях, основными источниками являются Скалистые горы США, Республика Конго, Канада и Южно-Африканский Союз.

Несмотря на радиоактивность, уран активно потребляется человечеством. Наиболее востребован в атомной энергетике – его используют как топливо для ядерных реакторов. Также уран применяется в химической промышленности и в геологии – для определения возраста горных пород.

Не пропустила невероятные показатели удельного веса и военная инженерия. Уран регулярно используется для создания сердечников бронебойных снарядов, которые, за счет высокой прочности, отлично справляются с поставленной задачей.


Уран является самым твёрдым металлом, но он радиоактивный

Увенчивает наш список самых твёрдых металлов на Земле блестящий серебристо-серый вольфрам. По шкале Мооса твердость вольфрама равна 6, как и у урана, но, в отличие от последнего, он не является радиоактивным. Природная твёрдость, однако, не лишает его гибкости, потому вольфрам идеально подходит для ковки разных металлических изделий, а его устойчивость к высоким температурам позволяет применять его в осветительных приборах и электронике. Потребление вольфрама не достигает больших оборотов, и главной тому причиной является его ограниченное количество в месторождениях.

Благодаря высоким показателям плотности вольфрам широко используется в оружестроении для производства тяжеловесов и артиллерийских снарядов. Вообще вольфрам активно используется в военной инженерии – пули, противовесы, баллистические ракеты. Следующим по популярности использования этого метала является авиация. Из него изготавливают двигатели, детали электровакуумных приборов. В строительстве используют режущие инструменты из вольфрама. Также он является незаменимым элементом при производстве лаков и светоустойчивых красок, огнестойких и водонепроницаемых тканей.


Вольфрам считается наиболее тугоплавким и прочным

Изучив свойства и сферы потребления каждого металла, сложно однозначно сказать, какой же самый твердый металл в мире, если брать во внимание не только показатели шкалы Мооса. Каждый из представителей имеет ряд преимуществ. Например, титан, не обладающий сверхвысокой твердостью, прочно занял первое место среди самых используемых металлов. А вот уран, твердость которого достигает наивысшей отметки среди металлов, не так популярен из-за слабой радиоактивности. А вольфрам, который не излучает радиации и имеет наивысшую прочность и очень хорошие показатели податливости, не может быть активно использован из-за ограниченных ресурсов.

Окружающий нас мир таит в себе еще множество загадок, но даже давно известные ученым явления и вещества не перестают удивлять и восторгать. Мы любуемся яркими красками, наслаждаемся вкусами и используем свойства всевозможных веществ, делающих нашу жизнь комфортнее, безопаснее и приятнее. В поисках самых надежных и крепких материалов человек совершил немало восторгающих открытий, и перед вами подборка как раз из 25 таких уникальных соединений!

25. Алмазы

Об этом точно знают если не все, то почти все. Алмазы – это не только одни из самых почитаемых драгоценных камней, но и один из самых твердых минералов на Земле. По шкале Мооса (шкала твёрдости, в которой оценка дается по реакции минерала на царапание) алмаз числится на 10 строчке. Всего в шкале 10 позиций, и 10-ая – последняя и самая твердая степень. Алмазы такие твердые, что поцарапать их можно разве что другими алмазами.

24. Ловчие сети паука вида Caerostris darwini


Фото: pixabay

В это сложно поверить, но сеть паука Caerostris darwini (или паук Дарвина) крепче стали и тверже кевлара. Эту паутину признали самым твердым биологическим материалом в мире, хотя сейчас у нее уже появился потенциальный конкурент, но данные еще не подтверждены. Паучье волокно проверили на такие характеристики, как разрушающая деформация, ударная вязкость, предел прочности и модуль Юнга (свойство материала сопротивляться растяжению, сжатию при упругой деформации), и по всем этим показателям паутина проявила себя удивительнейшим образом. Вдобавок ловчая сеть паука Дарвина невероятно легкая. Например, если волокном Caerostris darwini обернуть нашу планету, вес такой длинной нити составит всего 500 граммов. Таких длинных сетей не существует, но теоретические подсчеты просто поражают!

23. Аэрографит


Фото: BrokenSphere

Эта синтетическая пена – один из самых легких волокнистых материалов в мире, и она представляет собой сеть углеродных трубочек диаметром всего в несколько микронов. Аэрографит в 75 раз легче пенопласта, но при этом намного прочнее и пластичнее. Его можно сжать до размеров, в 30 раз меньших первоначального вида, без какого-либо вреда для его чрезвычайно эластичной структуры. Благодаря этому свойству аэрографитная пена может выдержать нагрузку, в 40 000 раз превышающую ее собственный вес.

22. Палладиевое металлическое стекло


Фото: pixabay

Команда ученых их Калифорнийского технического института и Лаборатории Беркли (California Institute of Technology, Berkeley Lab) разработала новый вид металлического стекла, совместивший в себе практически идеальную комбинацию прочности и пластичности. Причина уникальности нового материала кроется в том, что его химическая структура успешно скрадывает хрупкость существующих стеклообразных материалов и при этом сохраняет высокий порог выносливости, что в итоге значительно увеличивает усталостную прочность этой синтетической структуры.

21. Карбид вольфрама


Фото: pixabay

Карбид вольфрама – это невероятно твердый материал, обладающий высокой износостойкостью. В определенных условиях это соединение считается очень хрупким, но под большой нагрузкой оно показывает уникальные пластические свойства, проявляющиеся в виде полос скольжения. Благодаря всем этим качествам карбид вольфрама используется в изготовлении бронебойных наконечников и различного оборудования, включая всевозможные резцы, абразивные диски, свёрла, фрезы, долота для бурения и другие режущие инструменты.

20. Карбид кремния


Фото: Tiia Monto

Карбид кремния – один из основных материалов, используемых для производства боевых танков. Это соединение известно своей низкой стоимостью, выдающейся тугоплавкостью и высокой твердостью, и поэтому оно часто используется в изготовлении оборудования или снаряжения, которое должно отражать пули, разрезать или шлифовать другие прочные материалы. Из карбида кремния получаются отличные абразивы, полупроводники и даже вставки в ювелирные украшения, имитирующие алмазы.

19. Кубический нитрид бора


Фото: wikimedia commons

Кубический нитрид бора – это сверхтвердый материал, по своей твердости схожий с алмазом, но обладающий и рядом отличительных преимуществ – высокой температурной устойчивости и химической стойкости. Кубический нитрид бора не растворяется в железе и никеле даже под воздействием высоких температур, в то время как алмаз в таких же условиях вступает в химические реакции достаточно быстро. На деле это выгодно для его использования в промышленных шлифовальных инструментах.

18. Сверхвысокомолекулярный полиэтилен высокой плотности (СВМПЭ), марка волокон «Дайнима» (Dyneema)


Фото: Justsail

Полиэтилен с высоким модулем упругости обладает чрезвычайно высокой износостойкостью, низким коэффициентом трения и высокой вязкостью разрушения (низкотемпературная надёжность). Сегодня его считают самым прочным волокнистым веществом в мире. Самое удивительное в этом полиэтилене то, что он легче воды и одновременно может останавливать пули! Тросы и канаты из волокон Дайнима не тонут в воде, не нуждаются в смазке и не меняют свои свойства при намокании, что очень актуально для судостроения.

17. Титановые сплавы


Фото: Alchemist-hp (pse-mendelejew.de)

Титановые сплавы невероятно пластичные и демонстрируют удивительную прочность во время растяжения. Вдобавок они обладают высокой жаропрочностью и коррозионной стойкостью, что делает их крайне полезными в таких областях, как авиастроение, ракетостроение, судостроение, химическое, пищевое и транспортное машиностроение.

16. Сплав Liquidmetal


Фото: pixabay

Разработанный в 2003 году в Калифорнийском техническом институте (California Institute of Technology), этот материал славится своей силой и прочностью. Название соединения ассоциируется с чем-то хрупким и жидким, но при комнатной температуре оно на самом деле необычайно твердое, износостойкое, не боится коррозии и при нагревании трансформируется, как термопласты. Основными сферами применения пока что являются изготовление часов, клюшек для гольфа и покрытий для мобильных телефонов (Vertu, iPhone).

15. Наноцеллюлоза


Фото: pixabay

Наноцеллюлозу выделяют из древесного волокна, и она представляет собой новый вид деревянного материала, который прочнее даже стали! Вдобавок наноцеллюлоза еще и дешевле. Инновация имеет большой потенциал и в будущем может составить серьезную конкуренцию стеклу и углеволокну. Разработчики считают, что этот материал вскоре будет пользоваться большим спросом в производстве армейской брони, супергибких экранов, фильтров, гибких батареек, абсорбирующих аэрогелей и биотоплива.

14. Зубы улиток вида «морское блюдечко»


Фото: pixabay

Ранее мы уже рассказали вам о ловчей сети паука Дарвина, которую некогда признали самым прочным биологическим материалом на планете. Однако недавнее исследование показало, что именно морского блюдечка – наиболее прочная из известных науке биологических субстанций. Да-да, эти зубки прочнее паутины Caerostris darwini. И это неудивительно, ведь крошечные морские создания питаются водорослями, растущими на поверхности суровых скал, и чтобы отделить пищу от горной породы, этим зверькам приходится потрудиться. Ученые полагают, что в будущем мы сможем использовать пример волокнистой структуры зубов морских блюдечек в машиностроительной промышленности и начнем строить автомобили, лодки и даже воздушные суда повышенной прочности, вдохновившись примером простых улиток.

13. Мартенситно-стареющая сталь


Фото: pixabay

Мартенситно-стареющая сталь – это высокопрочный и высоколегированный сплав, обладающий превосходной пластичностью и вязкостью. Материал широко распространен в ракетостроении и используется для изготовления всевозможных инструментов.

12. Осмий


Фото: Periodictableru / www.periodictable.ru

Осмий – невероятно плотный элемент, и благодаря своей твердости и высокой температуре плавления он с трудом поддается механической обработке. Именно поэтому осмий используют там, где долговечность и прочность ценятся больше всего. Сплавы с осмием встречаются в электрических контактах, ракетостроении, военных снарядах, хирургических имплантатах и применяются еще во многих других областях.

11. Кевлар


Фото: wikimedia commons

Кевлар – это высокопрочное волокно, которое можно встретить в автомобильных шинах, тормозных колодках, кабелях, протезно-ортопедических изделиях, бронежилетах, тканях защитной одежды, судостроении и в деталях беспилотных летательных аппаратов. Материал стал практически синонимом прочности и представляет собой вид пластика с невероятно высокой прочностью и эластичностью. Предел прочности кевлара в 8 раз выше, чем у стального провода, а плавиться он начинает при температуре в 450℃.

10. Сверхвысокомолекулярный полиэтилен высокой плотности, марка волокон «Спектра» (Spectra)


Фото: Tomas Castelazo, www.tomascastelazo.com / Wikimedia Commons

СВМПЭ – это по сути очень прочный пластик. Спектра, марка СВМПЭ, – это в свою очередь легкое волокно высочайшей износостойкости, в 10 раз превосходящее по этому показателю сталь. Как и кевлар, спектра используется в изготовлении бронежилетов и защитных шлемов. Наряду с СВМПЭ марки дайнимо спектра популярна в судостроении и транспортной промышленности.

9. Графен


Фото: pixabay

Графен – это аллотропная модификация углерода, и его кристаллическая решетка толщиной всего в один атом настолько прочная, что она в 200 раз тверже стали. Графен с виду похож на пищевую пленку, но порвать его – практически непосильная задача. Чтобы пробить графеновый лист насквозь, вам придется воткнуть в него карандаш, на котором должен будет балансировать груз весом с целый школьный автобус. Удачи!

8. Бумага из углеродных нанотрубок


Фото: pixabay

Благодаря нанотехнологиям ученым удалось сделать бумагу, которая в 50 тысяч раз тоньше человеческого волоса. Листы из углеродных нанотрубок в 10 раз легче стали, но удивительнее всего то, что по прочности они превосходят в целых 500 раз! Макроскопические пластины из нанотрубок наиболее перспективны для изготовления электродов суперконденсаторов.

7. Металлическая микрорешетка


Фото: pixabay

Перед вами самый легкий в мире металл! Металлическая микрорешетка – это синтетический пористый материал, который в 100 раз легче пенопласта. Но пусть его внешний вид не вводит вас в заблуждение, ведь эти микрорешетки заодно и невероятно прочные, благодаря чему они обладают большим потенциалом для использования во всевозможных инженерных областях. Из них можно изготавливать превосходные амортизаторы и тепловые изоляторы, а удивительная способность этого металла сжиматься и возвращаться в своё первоначальное состояние позволяет использовать его для накопления энергии. Металлические микрорешетки также активно применяются в производстве различных деталей для летательных аппаратов американской компании Boeing.

6. Углеродные нанотрубки


Фото: User Mstroeck / en.wikipedia

Выше мы уже рассказывали про сверхпрочные макроскопические пластины из углеродных нанотрубок. Но что же это за материал такой? По сути это свернутые в трубку графеновые плоскости (9-ый пункт). В результате получается невероятно легкий, упругий и прочный материал широкого спектра применения.

5. Аэрографен


Фото: wikimedia commons

Известный также как графеновый аэрогель, этот материал чрезвычайно легкий и прочный одновременно. В новом виде геля жидкая фаза полностью заменена на газообразную, и он отличается сенсационной твердостью, жаропрочностью, низкой плотностью и низкой теплопроводностью. Невероятно, но графеновый аэрогель в 7 раз легче воздуха! Уникальное соединение способно восстанавливать свою изначальную форму даже после 90% сжатия и может впитывать такое количество масла, которое в 900 раз превышает вес используемого для абсорбции аэрографена. Возможно, в будущем этот класс материалов поможет в борьбе с такими экологическими катастрофами, как разливы нефти.

4. Материал без названия, разработка Массачусетского технологического института (MIT)


Фото: pixabay

Пока вы читаете эти строки, команда ученых из MIT работает над усовершенствованием свойств графена. Исследователи заявили, что им уже удалось преобразовать двумерную структуру этого материала в трехмерную. Новая графеновая субстанция еще не получила своего названия, но уже известно, что ее плотность в 20 раз меньше, чем у стали, а ее прочность в 10 раз выше аналогичной характеристики стали.

3. Карбин


Фото: Smokefoot

Хоть это и всего лишь линейные цепочки атомов углерода, карбин обладает в 2 раза более высоким пределом прочности, чем графен, и он в 3 раза жестче алмаза!

2. Нитрид бора вюрцитной модификации


Фото: pixabay

Это недавно открытое природное вещество формируется во время вулканических извержений, и оно на 18% тверже алмазов. Впрочем, алмазы оно превосходит еще по целому ряду других параметров. Вюрцитный нитрид бора – одна из всего 2 натуральных субстанций, обнаруженных на Земле, которая тверже алмаза. Проблема в том, что таких нитридов в природе очень мало, и поэтому их непросто изучать или применять на практике.

1. Лонсдейлит


Фото: pixabay

Известный также как алмаз гексагональный, лонсдейлит состоит из атомов углерода, но в случае данной модификации атомы располагаются несколько иначе. Как и вюрцитный нитрид бора, лонсдейлит – превосходящая по твердости алмаз природная субстанция. Причем этот удивительный минерал тверже алмаза на целых 58%! Подобно нитриду бора вюрцитной модификации, это соединение встречается крайне редко. Иногда лонсдейлит образуется во время столкновения с Землей метеоритов, в состав которых входит графит.

Металлы использовались человеком еще на заре цивилизации. Одним из первых известных была медь, благодаря своей легкости в обработке и широкой распространенности. Археологи находили в процессе раскопок тысячи медных изделий. Прогресс не стоит на месте, и вскоре человечество научилось производить прочные сплавы, чтобы изготавливать оружие и сельскохозяйственные инструменты. По сей день эксперименты с металлами не прекращаются, так что стало возможным выявить, какой самый прочный металл в мире.

Иридий

Итак, самый прочный металл ‒ это иридий. Получают его путем выпадения осадка от растворения платины в серной кислоте. По прошествии реакции вещество приобретает черный цвет, в дальнейшем в процессе различных соединений может менять цвет: отсюда и название, в переводе означающее "радуга". Иридий открыли в начале XIX века, и с тех пор было найдено всего два способа растворить его: расплавленная щелочь и перекись натрия.

Иридий очень редко встречается в природе, в составе земли его количество не превышает 1 к 1 000 000 000. Вследствие этого, одна унция материала стоит как минимум 1000 долларов.

Иридий широко применяется в разных сферах деятельности человека, особенно в медицине. Из него производят глазные протезы, слуховые аппараты, электроды для мозга, а также специальные капсулы, которые вживляют в раковые опухоли.

По теории ученых, столь малое количество вещества говорит о том, что оно имеет инопланетное происхождение, а именно, принесено каким-либо астероидом.

Другой самый крепкий металл в мире, наименование которого произошло от названия нашей страны. Впервые его обнаружили на Урале. Вернее там нашли платину, в составе которой русские ученые позднее выявили новый металл. Это было 200 лет назад.

Благодаря своей красоте рутений нередко применяется в ювелирном деле, но не в чистом виде, ведь он очень редок

Рутений относится к благородным металлам. Он обладает не только твердостью, но и красотой. По твердости он лишь немного уступает кварцу. Но при этом он весьма хрупкий, его легко раскрошить в порошок или разбить, уронив с высоты. Кроме того, это самый легкий и прочный металл, его плотность едва ли составляет тринадцать граммов на сантиметр в кубе.

При всем своем плохом сопротивлении ударам рутений прекрасно противостоит высоким температурам. Чтобы его расплавить, необходимо нагреть более чем до 2300 градусов. Если сделать это при помощи электрической дуги, вещество может перейти сразу в газообразное состояние, миновав стадию жидкости.

В составе сплавов его применение чрезвычайно широко, даже в космической механике, к примеру, сплавы металлов рутения и платины были избраны для изготовления топливных элементов для искусственных спутников Земли.

Первым на Земле этот металл открыл шведский ученый Экеберг. Но выделить его в чистом виде химику так и не удалось, с этим возникли трудности, поэтому он и получил название греческого героя мифов, Тантала. Активно использоваться тантал начал лишь в период Второй мировой войны.

Тантал ‒ твердый долговечный металл серебристого цвета, при обычной температуре проявляет мало активности, окисляется лишь при нагреве свыше 280°С, а плавится лишь при почти 3300 Кельвин.


Невзирая на свою прочность, тантал довольно пластичен, приблизительно как золото, и работа с ним не вызывает затруднений

Допускается использование тантала в качестве заменителя нержавеющих сталей, срок службы может отличаться на целых двадцать лет.

Также тантал применяется:

  • в авиации для изготовления жаропрочных деталей;
  • в химии в составе антикоррозийных сплавов;
  • в ядерной энергетике, поскольку он крайне устойчив к парам цезия;
  • медицине для изготовления имплантатов и протезов;
  • в вычислительной технике для производства сверхпроводников;
  • в военном деле для разного рода снарядов;
  • в ювелирном деле, поскольку при окислении он может приобретать различные оттенки.

Этот металл считается биогенным, значит, способен положительно влиять на живые организмы. К примеру, количество хрома регулирует уровень холестерина. Если хрома в организме меньше шести миллиграммов, то это приводит к резкому увеличению холестерина в крови. Получить ионы хрома можно, к примеру, из перловки, утятины, печёнки или свёклы.
Хром тугоплавок, не реагирует на влагу и не окисляется (только при нагревании выше 600°С).


Металл активно используют для создания хромированных покрытий, зубных коронок

Этот долговечный металл ранее назывался глюцинием, потому что люди отметили его сладковатый вкус. Кроме того, у этого вещества еще много удивительных свойств. Он неохотно вступает в химические реакции. Чрезвычайно прочен: опытным путем установлено, что бериллиевая проволока толщиной в миллиметр способна удержать на весу взрослого человека. Для сравнения, алюминиевая проволока выдерживает лишь двенадцать килограммов.

Бериллий очень ядовит. При попадании в организм он способен заменять магний в костях, это состояние носит название бериллиоз. Он сопровождается сухим кашлем и отечностью легких, может привести к смерти. Ядовитость, пожалуй, единственный существенный недостаток бериллия для человека. В остальном же у него масса плюсов и масса способов применения: тяжелая промышленность, ядерное топливо, авиация и космонавтика, металлургия, медицина.


Бериллий очень легок, в сравнении с некоторыми щелочными металлами

Этот прочный металл еще более дорогой, чем иридий (а уступает лишь калифорнию). Однако применяется он в таких областях, где важнее результат, чем затраты на него: для производства медицинского оборудования в самые лучшие мировые клиники. Кроме того, может использоваться для изготовления электрических контактов, деталей измерительной техники и дорогих часов вроде "Ролекс", электронных микроскопов, военных боеголовок. Благодаря осмию они становятся прочнее и выдерживают более высокие температуры, вплоть до экстремальных.

Осмий не встречается в природе самостоятельно, только в паре с родием, так что после добычи предстоит задача разделить их атомы. Реже встречается осмий в "комплекте" с платиной, медью и некоторыми другими рудами.


В год на планете вырабатывается лишь несколько десятков килограммов вещества

Этот металл обладает очень прочной структурой. Сам он беловатого цвета, а при измельчении в порошок становится черным. Металл очень редок и добывается в совокупности с другими рудами и минералами. Концентрация рения в природе ничтожно мала.

Из-за невероятной дороговизны вещество используются лишь в случаях крайней необходимости. Ранее его сплавы благодаря своей жаростойкости использовались в авиации и ракетостроении, в том числе для оснащения сверхзвуковых истребителей. Именно эта сфера и была основным пунктом мирового потребления рения, сделав его материалом военно-стратегического назначения.

Из рения делают нити накаливания и пружины для измерительных приборов, самоочищающиеся контакты и специальные катализаторы, необходимые для получения бензина. Именно это в последние годы повысило спрос на рений в разы. Мировой рынок готов буквально сражаться за этот редкий металл.


Во всем мире есть лишь одно его полноценное месторождение, и находится оно в России, второе, гораздо меньше, - в Финляндии

Ученые изобрели новое вещество, которое по своим свойствам может стать прочнее известных металлов. Его назвали «Ликвид-металл». Эксперименты с ним начались совсем недавно, но он уже зарекомендовал себя. Вполне возможно, в скором времени «Ликвид-металл» потеснит так хорошо известные нам металлы.

К металлам относят вещества, которые обладают специфическими, характерными для них свойствами. Учитывают при этом высокую пластичность и ковкость, а также электропроводность и еще целый ряд параметров. Какой из нихсамый прочный металл , можно узнать из приведенных ниже данных.

О металлах в природе

В русский язык слово «металл» пришло из немецкого. С XVI века оно встречается в книгах, правда, достаточно редко. В дальнейшем, в эпоху Петра I, его стали употреблять более часто, причем, тогда слово имело обобщающее значение «руда, минерал, металл». И только в период деятельности М.В. Ломоносова эти понятия были разграничены.

В природе металлы встречаются в чистом виде достаточно редко. В основном, они входят в состав различных руд, а также образуют всевозможные соединения, такие как сульфиды, оксиды, карбонаты и другие. Для того чтобы получить чистые металлы, а это очень важно для их применения в дальнейшем, нужно их выделить, а затем очистить. При необходимости, металлы легируют - добавляют специальные примеси, с целью изменения их свойств. В настоящее время есть разделение на руды черных металлов, которые включают в свой состав железо, и цветных. К драгоценным или благородным металлам относят золото, платину и серебро.

Металлы есть даже в организме человека. Кальций, натрий, магний, медь, железо - вот перечень этих веществ, которые содержатся в наибольшем количестве.

В зависимости от дальнейшего применения, металлы подразделяют на группы:

  1. Конструкционные материалы. Используют как сами металлы, так и их значительно улучшенные по свойствам сплавы. В данном случае ценят прочность, непроницаемость для жидкостей и газов, однородность.
  2. Материалы для инструментов, чаще всего имеется в виду рабочая часть. Для этого подходят инструментальные стали и твердые сплавы.
  3. Электротехнические материалы. Такие металлы используют как хорошие проводники электричества. Самые распространенные из них - это медь и алюминий. А также применяют как материалы, имеющие высокое сопротивление, - нихром и другие.

Самые прочные из металлов

Прочностью металлов называют их способность оказывать сопротивление разрушению под действием внутренних напряжений, которые могут возникать при влиянии на эти материалы внешних сил. Также это свойство конструкции сохранять свои характеристики в течение определенного времени.

Многие сплавы достаточно крепкие и стойкие не только к физическим, но и химическим воздействиям, к чистым металлам они не относятся. Есть металлы, которые можно назвать самыми прочными. Титан, который плавится при температуре свыше 1 941 K (1660±20 °C), уран, относящийся к радиоактивным металлам, тугоплавкий вольфрам, закипающий при температуре не менее 5 828 K (5555 °C). А также другие, обладающие уникальными свойствами и необходимые в процессе изготовления деталей, инструментов и предметов по самым современным технологиям. В пятерку самых прочных из них входят металлы, свойства которых уже известны, их широко применяют в различных отраслях народного хозяйства и используют в научных опытах и разработках.

Встречается в молибденовых рудах и медном сырье. Имеет высокую твердость и плотность. Очень тугоплавкий. Его прочность не может быть уменьшена даже под воздействием критических перепадов температур. Широко используется во многих электронных приборах и технических средствах.

Металл, относящийся к редкоземельным, имеющий серебристо-серый оттенок и блестящие, кристаллические образования на сломах. Интересно, что кристаллы бериллия на вкус несколько сладковатые, из-за этого его первоначально называли «глюциний», что значит «сладкий». Благодаря этому металлу появилась новая технология, которую используют в синтезе искусственных камней - изумрудов, аквамаринов, для нужд ювелирной промышленности. Бериллий был открыт при изучении свойств берилла - полудрагоценного камня. В 1828 г. немецким ученым Ф. Вёллером был получен металлический бериллий. Он не взаимодействует с рентгеновским излучением, следовательно, его активно используют для создания специальных приборов. Кроме того, сплавы бериллия применяются в изготовлении нейтронных отражателей и замедлителей для установки в ядерном реакторе. Его огнеупорные и антикоррозионные свойства, высокая теплопроводность делают его незаменимым элементом для создания сплавов, используемых в самолетостроении и аэрокосмической промышленности.

Этот металл был открыт на территории среднего Урала. О нем написал М.В. Ломоносов в своей работе «Первые основания металлургии» в 1763 году. Является весьма распространенным, его самые известные и обширные месторождения расположены в ЮАР, Казахстане и России (Урал). Содержание этого металла в рудах сильно колеблется. Его цвет светло-голубой, с отливом. В чистом виде очень твердый и достаточно хорошо обрабатывается. Он служит важным компонентом для создания легированных сталей, особенно нержавеющих, применяется в гальванике и авиакосмической промышленности. Его сплав с железом, феррохром необходим для производства металлорежущих инструментов.

Этот металл относится к ценным, так как его свойства лишь ненамного ниже, чем у благородных металлов. Он обладает сильной устойчивостью к различным кислотам, не подвержен коррозии. Тантал применяется в различных конструкциях и соединениях, для изготовления изделий сложной формы и как основа для производства уксусной и фосфорной кислот. Металл используют в медицине, так как его можно совместить с тканями человека. В жаропрочном сплаве тантала и вольфрама нуждается ракетная отрасль, ведь он может выдержать температуру в 2 500 °C. Конденсаторы из тантала устанавливают на радарные аппараты, применяют в электронных системах как передатчики.

Одним из самых прочных металлов в мире считается иридий. Металл серебристого цвета, очень твердый. Его относят к металлам платиновой группы. Он трудно поддается обработке и, к тому же, тугоплавкий. Иридий практически не вступает во взаимодействие с едкими веществами. Применяют его во многих отраслях. В том числе и в ювелирном деле, медицинской и химической промышленностях. Значительно улучшает стойкость вольфрамовых, хромовых и титановых соединений по отношению к кислым средам. Чистый иридий не является токсичным материалом, но его отдельные соединения могут быть .

Несмотря на то, что многие металлы обладают достойными характеристиками, точно указать, какой именно самый прочный металл в мире, достаточно сложно. Для этого изучают все их параметры, в соответствии с различными аналитическими системами. Но в настоящее время все ученые утверждают, что первое место по прочности уверенно занимает иридий.

    Распространенное мнение о твердости – это алмаз или булат / дамасская сталь. Если первый минерал превосходит все простые вещества, существующие на Земле, что создала природа, то, поражающими воображение свойствами клинков из редкой стали, они обязаны мастерству кузнецов-оружейников, добавкам из других металлов. Многие технические сплавы, применяемые, например, для производства сверхтвердых резцов в машиностроительной промышленности, создания прочного, надежного инструмента, обладающего уникальными свойствами, связаны с этими добавками в привычном симбиозе железа с углеродом, кратко, традиционно называемыми сталью, – хрому, титану, ванадию, молибдену, никелю. Когда читатели спрашивают, какой самый твердый металл в мире, то в ответ на страницах сайтов на них обрушивается шквал противоречивой информации. В этом амплуа, по мнению авторов различных статей, выступает то вольфрам или хром, то иридий с осмием, то титан с танталом.

    Чтобы пробраться через дебри не всегда правильно истолкованных, пусть и точных фактов, стоит обратиться к первоисточнику – системе элементов, содержащихся как в составе , так и в остальных космических объектах, оставленной человечеству великим русским химиком и физиком Д.И. Менделеевым. Он обладал энциклопедическими знаниями, совершил много научных прорывов в знании об устройстве, составе, взаимодействии веществ, помимо знаменитой таблицы на основе открытого им фундаментального периодического закона, названной его именем.

    Ближайшие к Солнцу планеты – Меркурий, Венеру, Марс, вместе с нашей планетой, причисляют к одной – земной группе. Основания для этого есть не только у астрономов, физиков и математиков, но и у геологов с химиками. Поводом для таких выводов у последних является в том числе и то, что все они, в основном, состоят из силикатов, т.е. различных производных элемента кремния, а также многочисленных соединений металлов из таблицы Дмитрия Ивановича.

    В частности, наша планета большей частью (до 99%) состоит из десяти элементов:

    Но человека, кроме необходимого для выживания и развития железа и сплавов на его основе, всегда куда больше привлекали драгоценные, часто уважительно называемые благородными, металлы – золото и серебро, позднее – платина.

    С ней в одну, по научной классификации, принятой у химиков, платиновую группу входят рутений, родий, палладий и осмий с иридием. Все они также относятся к благородным металлам. По атомной массе их еще условно разделяют на две подгруппы:

    Последние два и представляют особый интерес для нашего околонаучного расследования на тему, кто тут самый твердый. Связано это с тем, что большая, по сравнению с другими элементами, атомная масса: 190,23 - у осмия, 192,22 – у иридия, по законам физики, подразумевает и огромную удельную плотность, а, следовательно, твердость этих металлов.

    Если плотные, тяжелые золото и свинец – это мягкие, пластичные вещества, несложные в обработке, то осмий и иридий, открытые в начале XIX века, на поверку оказались хрупкими. Здесь необходимо вспомнить, что мерило этого физического свойства – алмаз, которым можно без особых усилий нанести надпись на любом другом твердом материале природного или искусственного происхождения, также крайне хрупок, т.е. его достаточно несложно разбить. Хотя, на первый взгляд, это кажется практически невозможным.

    Кроме того, осмий и палладий обладают еще многими интересными свойствами:

    • Очень высокой тугоплавкостью.
    • Не поддаются коррозии, окислению даже при нагревании до высокой температуры.
    • Стойки к воздействию концентрированных кислот и других агрессивных соединений.

    Поэтому наравне с платиной, в том числе в виде соединений с ней, они используются при производстве катализаторов многих химических процессов, высокоточных приборов, оборудования, инструментов в медицинской, научной, военной, космической отраслях деятельности человечества.

    Именно осмий и иридий, а ученые после исследований считают, что это свойство у них примерно одинаково дано природой, являются самыми твердыми металлами в мире.

    И все бы хорошо, да не очень-то. Дело в том, что как их наличие в земной коре, так и, соответственно, мировая добыча этих весьма полезных ископаемых ничтожны:

    • 10 -11% – это их содержание в твердой оболочке планеты.
    • Суммарное количество произведенного чистого металла в год в пределах: 4 т по иридию, 1 т – осмию.
    • Цена осмия примерно равна цене золота.

    Понятно, что эти редкоземельные, дорогие металлы, невзирая на их твердость, не могут даже ограничено использоваться в качестве сырья для производства; разве что как добавки в сплавы, соединения с другими металлами для придания уникальных свойств.

    Кто за них?

    Но человек не был собой, если бы не нашел замены иридию с осмием. Раз нецелесообразно, слишком дорого использовать их, то и внимание небезуспешно было обращено к другим металлам, нашедшим свое применение в разных ситуациях, отраслях для создания новых сплавов, композитных материалов, производства оборудования, машин и механизмов как гражданского, так и военного применения:

    Хотясамый твердый металл в мире, а, вернее, целых два – иридий и осмий, показали свои уникальные свойства лишь в лабораторных условиях, а также в качестве ничтожных по процентному содержанию добавок в сплавы, других соединения для создания новых материалов, необходимых человеку, следует быть благодарными природе и за этот подарок. В то же время нет никаких сомнений, что пытливые умы талантливых ученых, гениальных изобретателей придумают новые вещества с уникальными свойствами, как это уже произошло с синтезом фуллеренов, которые оказались тверже алмаза, что уже удивительно.