Биохимия (биологическая химия). Биохимия

Что такое БиоХимия?

Вопрос решен и закрыт .

    Будущий врач, химик или фармацевт?

    3)ну так белки - они же денатурируют, поэтому и в осадок выпадают! нагреваешь выше 70 градусов и всё. водородные связи распались. белок потерял свою форму в пространстве, т.е. распалась вторичная структура (это когда он закручивался в спираль и занимал определенное пположение в просранстве), только первичная структура не пострадала (аминокислоты, последовательно соединённые пептидными связями "в линию")... * ___это примерно как, если бы песочная фигура вдруг рассыпалась на песчинки и потеряла свою форму в пространстве, хотя молекулы песка сохранились те же___ * ну или кроме нагревания, кислотой и другими химикалиями, органическими растворителями (этанол, например), солями тяжелых металлов можно на белок воздействовать и он в осадок выпадет, ещё УВ излучение, формалин)) ... с третичноу структурой всё сложнее. там еще бывают ионные (соо- и NH3+), гидрофильные, гидрофобные связи...

    2)гидролиз белков пролисходит в кислой среде, при повыш. температуре. (методы см.выше) а ещё биохимический гидролиз делают энзимы:) - протеазы. из протеина образуются пептоны, потом полипептиды, потом альфааминокислоты. во, биохимический метод.

    1)а если у аминокислоты 2 группы СООН, то у этой кислоты будет отрицательный заряд и соответсвенно - кислотные свойста, а если две группы ОН, то отрицательный заряд и щелочные свойтсва. а какие особенности реакции конденсации - я в ступоре, не знаю.

    Из пальца кровь берут для мелких анализов: глюкометр - на сахар, на группу крови могут брать, на проверку уровня гемоглобина. Из вены берут на крупные анализы (гепатит, СПИД и т.д.)

    Кровь из пальца??? Странно... уже давно из пальца кровь не берут... ты с какой деревни?


    Берут ещё как. Везде!

    эта деревня называется россией)))


    В России медицина одна из лучших в мире! Разные клиники есть. И не называй Россию деревней! Москва, Питер, Казань, Челябинск, Уфа, Омск, Новосибирск и многое др. городов все около миллиона или больше населением. И ты там был? Я был! Везде динамика! Народ бегает, торгует, работает... а у нас в Латвии внешне наблюдается латышская тормознутость. Картину везде наблюдал: прямая трасса, машине надо повернуть налево, естественно она немного тормозит, в России же народ за этой машиной не будет ждать, пока она повернёт, они все объедут по обочине и поедут дальше. Потому как там важно успевать и делать!
  • Можно спать спокойно,но периодически раз в полгода повторять.Так врачи рекомендуют.

    В любом случае придется сдавать и практику, и теорию. Лучше всё подучить, позаниматься самостоятельно и с репетитором. Темы:
    1. Кровь;
    2. Клиническая биохимия;
    3. Мышцы;
    4. Отклонения и нормы;
    5. Аминокислоты;
    6. Белки;
    7. Ферменты;
    8. Обмен аминокислот;
    9. Витамины;
    10. Жиры;
    11. Углеводы;
    12. Нарушение обмена аминокислот;
    13. Превращение аминокислот;
    14. Обмен азотистых оснований и нуклеотидов;
    15. Матричные биосинтозы;
    16. Биосинтозы;
    17. Обмен и строение углеводов;
    18. Общие пути катаболизма;
    19. Гормональная сигнализация;
    20. Биохимия азотистых веществ крови;
    21. Обмен гема и гемоглобина;
    22. Кислотно-основное состояние;
    23. Биохимия почек;
    24. Биохимия печени.

В этой статье мы ответим на вопрос, что такое биохимия. Здесь мы рассмотрим определение этой науки, ее историю и методы исследования, уделим внимание некоторым процессам и определим ее разделы.

Введение

Чтобы ответить на вопрос о том, что такое биохимия, достаточно сказать, что это наука, посвященная химическому составу и процессам, протекающим внутри живой клетки организма. Однако она имеет множество составляющих, узнав которые, можно более конкретизировано составить представление о ней.

В некоторых временных эпизодах XIX века терминологическая единица «биохимия» стала впервые использоваться. Однако была введена в научные круги лишь в 1903 году химиком из Германии - Карлом Нейбергом. Эта наука занимает промежуточную позицию между биологией и химией.

Исторические факты

Ответить на вопрос четко, что такое биохимия, человечество смогло лишь около ста лет назад. Несмотря на то что общество использовало биохимические процессы и реакции еще в далекой древности, оно не подозревало о наличии их истинной сути.

Одними из самых отдаленных примеров может служить изготовление хлеба, виноделие, сыроварение и т. д. Ряд вопросов о целебных свойствах растений, проблем со здоровьем и т. п. заставил человека вникнуть в их основу и природу деятельности.

Развитие общего набора направлений, которые в конечном итоге привели к созданию биохимии, наблюдается уже в древних временах. Ученый-врач из Персии в десятом веке написал книгу о канонах врачебной науки, где смог подробно изложить описание различных лекарственных веществ. В XVII веке ван Гельмонт предложил термин «фермента» как единицы реагента химической природы, участвующей в пищеварительных процессах.

В XVIII веке, благодаря работам А.Л. Лавуазье и М.В. Ломоносова, был выведен закон сохранения массы вещества. В конце того же века было определено значение кислорода в процессе дыхания.

В 1827 году наука позволила создать разделение молекул биологической природы на соединения жиров, белков и углеводов. Этими терминами пользуются до сих пор. Годом позже в работе Ф. Велера было доказано, что вещества живых систем могут синтезироваться искусственными способами. Еще одним важным событием было изготовление и составление теории строения органических соединений.

Основы биохимии формировались многие сотни лет, но приняли четкое определение в 1903 году. Эта наука стала первой дисциплиной из разряда биологических, которая обладала собственной системой математических анализов.

Спустя 25 лет, в 1928 году, Ф. Гриффит провел эксперимент, целью которого было исследование механизма трансформации. Ученый заражал мышей пневмококками. Он убивал бактерии одного штамма и добавлял их к бактериям другого. Исследование показало, что процесс очистки болезнетворных агентов привел к образованию нуклеиновой кислоты, а не белка. Перечень открытий пополняется и в настоящее время.

Наличие смежных дисциплин

Биохимия - это отдельная наука, однако ее созданию предшествовал активный процесс развития органического раздела химии. Главное отличие заключается в объектах исследования. В биохимии рассматриваются только те вещества или процессы, которые могут протекать в условиях живых организмов, а не за их пределами.

В конечном итоге биохимия включила понятие молекулярной биологии. Отличаются они между собой преимущественно методами действий и предметам, которые они изучают. В настоящее время терминологические единицы «биохимия» и «молекулярная биология» стали использоваться в качестве синонимов.

Наличие разделов

На сегодняшний день биохимия включает в себя ряд исследовательских направлений, среди которых:

    Раздел статической биохимии - наука о химическом составе живых существ, структур и молекулярном разнообразии, функций и т. д.

    Существует ряд разделов, изучающий биологические полимеры белковых, липидных, углеводных, аминокислотных молекул, а также нуклеиновые кислоты и сам нуклеотид.

    Биохимия, изучающая витамины, их роль и форму воздействия на организм, возможные нарушения в процессах жизнедеятельности при нехватке или чрезмерном количестве.

    Гормональная биохимия - наука, изучающая гормоны, их биологический эффект, причины недостатка или переизбытка.

    Наука об обмене веществ и его механизмах - динамический раздел биохимии (включает в себя биоэнергетику).

    Исследования молекулярной биологии.

    Функциональная составляющая биохимии изучает явление химических превращений, отвечающих за функциональность всех компонентов организма, начиная с тканей, а заканчивая всем телом.

    Медицинская биохимия - раздел о закономерностях обмена веществ между структурами организма под влиянием заболеваний.

    Также существуют ответвления биохимии микроорганизмов, человека, животных, растений, крови, тканей и т. д.

    Средства исследования и решения проблем

    Методы биохимии основываются на фракционировании, анализе, детальном изучении и рассмотрении структуры как отдельного компонента, так и целого организма или его вещества. Большинство из них формировались в течение XX века, а самую широкую известность получила хроматография - процесс центрифугирования и электрофорез.

    В конце XX века биохимические методы начали все чаще и чаще находить свое применение в молекулярных и клеточных разделах биологии. Была определена структура всего генома человеческой ДНК. Это открытие дало возможность узнать о существовании огромного ряда веществ, в частности различных белков, которые не обнаруживались при очистке биомассы, в связи с их чрезвычайно малым содержанием в веществе.

    Геномика поставила под сомнение огромное количество биохимических знаний и обусловила развитие изменений в ее методологии. Появилось понятие компьютерного виртуального моделирования.

    Химическая составляющая

    Физиология и биохимия тесно связаны между собой. Это объясняется зависимостью нормы протекания всех физиологических процессов с содержанием различного ряда химических элементов.

    В природе можно встретить 90 компонентов периодической таблицы химических элементов, но для жизни необходимо около четверти. Во многих редких компонентах наш организм вовсе не нуждается.

    Различное положение таксона в иерархической таблице живых существ обуславливает разную потребность в наличии тех или иных элементов.

    99 % человеческой массы состоит из шести элементов (С, Н, N, O, F, Ca). Помимо основного количества данных видов атомов, образующих вещества, нам необходимы еще 19 элементов, но в малых или микроскопических объемах. Среди них имеются: Zn, Ni, Ma, K, Cl, Na и другие.

    Биомолекула белка

    Главные молекулы, изучением которых занимается биохимия, относятся к углеводам, белкам, липидам, нуклеиновым кислотам, а также внимание этой науки сосредоточенно на их гибридах.

    Белки - соединения, обладающие крупными размерами. Они образуются посредством связывания цепочек из мономеров - аминокислот. Большая часть живых существ получает белки при помощи синтеза двадцати видов этих соединений.

    Эти мономеры отличаются между собой структурой радикальной группы, которая играет огромную роль в ходе свертывания белка. Цель этого процесса заключается в образовании трехмерной структуры. Соединяются между собой аминокислоты при помощи образования пептидных связей.

    Отвечая на вопрос о том, что такое биохимия, нельзя не упомянуть такие сложные и многофункциональные биологические макромолекулы, как белки. Они имеют больше задач, чем полисахариды или нуклеиновые кислоты, которые необходимо выполнить.

    Некоторые белки представлены ферментами и занимаются катализом различных реакции биохимической природы, что очень важно для обмена веществ. Другие белковые молекулы могут выполнять роль сигнальных механизмов, образовывать цитоскелеты, участвовать в иммунной защите и т. д.

    Некоторые виды белков способны образовывать небелковые биомолекулярные комплексы. Вещества, созданные путем слияния белков с олигосахаридами, позволяют существовать таким молекулам, как гликопротеины, а взаимодействие с липидами приводит к появлению липопротеинов.

    Молекула нуклеиновой кислоты

    Нуклеиновые кислоты представлены комплексами макромолекул, состоящих из полинуклеотидного набора цепочек. Их главное функциональное предназначение заключается в кодировке наследственной информации. Синтез нуклеиновый кислоты происходит благодаря наличию мононуклеозидтрифосфатных макроэнергетических молекул (АТФ, ТТФ, УТФ, ГТФ, ЦТФ).

    Самые широко распространенные представители таких кислот - это ДНК и РНК. Эти структурные элементы находятся в составе каждой живой клетки, от археи, до эукариотов, и даже в вирусах.

    Молекула липида

    Липиды - это молекулярные вещества, составленные глицерином, к которым посредством сложно-эфирных связей прикрепляются жирные кислоты (от 1 до 3). Такие вещества делят на группы в соответствие с длиной углеводородной цепочки, а также обращают внимание на насыщенность. Биохимия воды не позволяет ей растворять в себе соединения липидов (жиров). Как правило, такие вещества растворяются в полярных растворах.

    Основные задачи липидов заключаются в обеспечении энергией организма. Некоторые входят в состав гормонов, могут выполнять сигнальную функцию или переносить липофильные молекулы.

    Молекула углевода

    Углеводы - это биополимеры, образованные путем соединения мономеров, которые в данном случае представлены моносахаридами, такими как, например, глюкоза или фруктоза. Изучение биохимии растений позволило человеку определить, что основная часть углеводов содержится именно в них.

    Свое применение эти биополимеры находят в структурной функции и предоставлении энергетических ресурсов организму или клетке. У растительных организмов главным запасающим веществом служит крахмал, а у животных - гликоген.

    Течение цикла Кребса

    Существует в биохимии цикл Кребса - явление, в ходе которого преобладающее количество эукариотических организмов получают большую часть энергии, расходуемой на процессы окисления поглощаемой пищи.

    Наблюдать его можно внутри клеточных митохондрий. Образуется посредством нескольких реакций, в ходе которых высвобождаются запасы «спрятанной» энергии.

    В биохимии цикл Кребса - это важный фрагмент общего дыхательного процесса и вещественного обмена внутри клеток. Цикл был открыт и изучен Х. Кребсом. За это ученый получил Нобелевскую премию.

    Данный процесс также называют системой для переноса электронов. Это связано с сопутствующим переходом АТФ в АДФ. Первое соединение, в свою очередь, занимается обеспечением метаболических реакций при помощи выделения энергии.

    Биохимия и медицина

    Биохимия медицины представлена нам в виде науки, охватывающей множество областей биологических и химических процессов. В настоящее время существует целая отрасль в образовании, которая готовит специалистов для данных исследований.

    Здесь изучают все живое: от бактерии или вируса до человеческого организма. Наличие специальности биохимика дает субъекту возможность следить за постановкой диагноза и анализировать лечение, применимое к индивидуальной единице, делать выводы и т. д.

    Чтобы подготовить высококвалифицированного эксперта в этой области, нужно обучить его естественным наукам, медицинским основам и биотехнологическим дисциплинам, проводят множество тестов по биохимии. Также студенту дают возможность практически применять свои знания.

    вузы биохимии в настоящее время приобретают все большую популярность, что обуславливается быстрым развитием этой науки, ее важностью для человека, востребованностью и т. д.

    Среди самых известных учебных заведений, где готовят специалистов этой отрасли науки, самые популярные и значимые: МГУ им. Ломоносова, ПГПУ им. Белинского, МГУ им. Огарева, Казанский и Красноярский государственные университеты и другие.

    Перечень документов, необходимых для поступления в подобные вузы не отличается от списка для зачисления в другие высшие учебные заведения. Биология и химия являются основными предметами, которые необходимо сдавать при поступлении.

БИОХИМИЯ (биологическая химия), наука, изучающая химический состав живых объектов, строение и пути превращения природных соединений в клетках, органах, тканях и целых организмах, а также физиологическую роль отдельных химических превращений и закономерности их регулирования. Термин «биохимия» введён немецким учёным К. Нейбергом в 1903 году. Предмет, задачи и методы исследования биохимии относятся к изучению всех проявлений жизни на молекулярном уровне; в системе естественных наук она занимает самостоятельную область, относящуюся в равной степени как к биологии, так и к химии. Биохимию традиционно подразделяют на статическую, занимающуюся анализом строения и свойств всех органических и неорганических соединений, входящих в состав живых объектов (клеточных органелл, клеток, тканей, органов); динамическую, изучающую всю совокупность превращений отдельных соединений (обмен веществ и энергии); функциональную, исследующую физиологическую роль молекул отдельных соединений и их превращений при определённых проявлениях жизнедеятельности, а также сравнительную и эволюционную биохимию, определяющую сходство и различия состава и обмена веществ у организмов, принадлежащих к разным таксономическим группам. В зависимости от объекта исследования выделяют биохимию человека, растений, животных, микроорганизмов, крови, мышц, нейрохимию и пр., а по мере углубления знаний и их специализации самостоятельными разделами становятся энзимология, изучающая строение и механизм действия ферментов, биохимия углеводов, липидов, нуклеиновых кислот, мембран. Исходя из целей и задач, биохимию часто делят на медицинскую, сельскохозяйственную, техническую, биохимию питания и пр.

Формирование биохимии в 16—19 веках. Становление биохимии как самостоятельной науки тесно связано с развитием других естественнонаучных дисциплин (химия, физика) и медицины. Существенный вклад в развитие химии и медицины в 16 - 1-й половине 17 века внесла ятрохимия. Её представители исследовали пищеварительные соки, жёлчь, процессы брожения и др., ставились вопросы о превращениях веществ в живых организмах. Парацелъс пришёл к выводу, что процессы, происходящие в организме человека, являются химическими процессами. Я. Сильвиус большое значение придавал правильному соотношению в организме человека кислот и щелочей, нарушение которого, как он полагал, лежит в основе многих заболеваний. Я. Б. ван Гельмонт пытался установить, за счёт чего создаётся вещество растений. В начале 17 века итальянский учёный С. Санторио с помощью специально сконструированной им камеры пытался установить соотношение количества принимаемой пищи и выделений человека.

Научные основы биохимии были заложены во 2-й половине 18 века, чему способствовали открытия в области химии и физики (в том числе открытие и описание ряда химических элементов и простых соединений, формулировка газовых законов, открытие законов сохранения и превращения энергии), использование химических методов анализа в физиологии. В 1770-х годах А. Лавуазье сформулировал идею о сходстве процессов горения и дыхания; установил, что дыхание человека и животных с химической точки зрения представляет собой процесс окисления. Дж. Пристли (1772) доказал, что растения выделяют кислород, необходимый для жизни животных, а голландский ботаник Я. Ингенхауз (1779) установил, что очищение «испорченного» воздуха производится только зелёными частями растений и только на свету (этими работами было положено начало изучению фотосинтеза). Л. Спалланцани предложил рассматривать пищеварение как сложную цепь химических превращений. К началу 19 века из природных источников был выделен ряд органических веществ (мочевина, глицерин, лимонная, яблочная, молочная и мочевая кислоты, глюкоза и др.). В 1828 году Ф. Вёлер впервые осуществил химический синтез мочевины из цианата аммония, развенчав тем самым господствовавшее до этого времени представление о возможности синтеза органических соединений только живыми организмами и доказав несостоятельность витализма. В 1835 году И. Берцелиус ввёл понятие катализа; он постулировал, что брожение - каталитический процесс. В 1836 году голландский химик Г. Я. Мульдер впервые предложил теорию строения белковых веществ. Постепенно происходило накопление данных о химическом составе растительных и животных организмов и протекающих в них химических реакциях, к середине 19 века описан ряд ферментов (амилаза, пепсин, трипсин и др.). Во 2-й половине 19 века были получены некоторые сведения о структуре и химических превращениях белков, жиров и углеводов, фотосинтезе. В 1850-55 годах К. Бернар выделил гликоген из печени и установил факт его превращения в глюкозу, поступающую в кровь. Работами И. Ф. Мишера (1868) было положено начало изучению нуклеиновых кислот. В 1870 году Ю. Либих сформулировал химическую природу действия ферментов (основные её принципы сохраняют своё значение и в наши дни); в 1894 году Э. Г. Фишер впервые использовал ферменты в качестве биокатализаторов химических реакций; он пришёл к заключению, что субстрат соответствует ферменту как «ключ замку». Л. Пастер сделал вывод о том, что брожение - биологический процесс, для осуществления которого необходимы живые дрожжевые клетки, отвергнув тем самым химическую теорию брожения (Й. Берцелиус, Э. Митчерлих, Ю. Либих), в соответствии с которой сбраживание сахаров - сложная химическая реакция. Ясность в этот вопрос была окончательно внесена после того, как Э. Бухнер (1897, совместно с братом, Г. Бухнером) доказал способность экстракта клеток микроорганизмов вызывать брожение. Их работы способствовали познанию природы и механизма действия ферментов. Вскоре А. Гарден установил, что брожение сопровождается включением фосфата в соединения углеводов, что послужило толчком к выделению и идентификации фосфорных эфиров углеводов и пониманию их ключевой роли в биохимических превращениях.

Развитие биохимии в России в этот период связано с именами А. Я. Данилевского (изучал белки и ферменты), М. В. Ненцкого (исследовал пути образования мочевины в печени, структуру хлорофилла и гемоглобина), В. С. Гулевича (биохимия мышечной ткани, экстрактивные вещества мышц), С. Н. Виноградского (открыл хемосинтез у бактерий), М. С. Цвета (создал метод хроматографического анализа), А. И. Баха (перекисная теория биологического окисления) и др. Российский врач Н. И. Лунин проложил путь к изучению витаминов, экспериментально доказав (1880) необходимость для нормального развития животных особых веществ (помимо белков, углеводов, жиров, солей и воды). В конце 19 века сформировались представления о сходстве основных принципов и механизмов химических превращений у различных групп организмов, а также об особенностях их обмена веществ (метаболизма).

Накопление большого количества сведений относительно химического состава растительного и животных организмов и протекающих в них химических процессов привело к необходимости систематизации и обобщения данных. Первой работой в этом направлении стал учебник И. Зимона («Handbuch der angewandten medicinischen Chemie», 1842). В 1842 году появилась монография Ю. Либиха «Die Tierchemie oder die organische Chemie in ihrer Anwendung auf Physiologie und Pathologie». Первый отечественный учебник физиологической химии был издан профессором Харьковского университета А. И. Ходневым в 1847 году. Периодические издания регулярно начали выходить с 1873 года. Во 2-й половине 19 века на медицинских факультетах многих российских и зарубежных университетов были организованы специальные кафедры (первоначально их называли кафедрами медицинской или функциональной химии). В России впервые кафедры медицинской химии были созданы А. Я. Данилевским в Казанском университете (1863) и А. Д. Булыгинским (1864) на медицинском факультете Московского университета.

Биохимия в 20 веке . Становление современной биохимии произошло в 1-й половине 20 века. Его начало отмечено открытием витаминов и гормонов, определена их роль в организме. В 1902 году Э. Г. Фишер первым синтезировал пептиды, установив тем самым природу химической связи между аминокислотами в белках. В 1912 году польский биохимик К. Функ выделил вещество, предотвращающее развитие полиневрита, и назвал его витамином. После этого постепенно были открыты многие витамины, и витаминология стала одним из разделов биохимии, а также науки о питании. В 1913 году Л. Михаэлисом и М. Ментен (Германия) были разработаны теоретические основы ферментативных реакций, сформулированы количественные закономерности биологического катализа; установлена структура хлорофилла (Р. Вильштеттер, А. Штоль, Германия). В начале 1920-х годов А. И. Опарин сформулировал общий подход к химическому пониманию проблемы возникновения жизни. Впервые были получены в кристаллическом виде ферменты уреаза (Дж. Самнер, 1926), химотрипсин, пепсин и трипсин (Дж. Нортроп, 1930-е годы), что послужило доказательством белковой природы ферментов и толчком для быстрого развития энзимологии. В эти же годы Х. А. Кребс описал механизм синтеза мочевины у позвоночных в ходе орнитинового цикла (1932); А. Е. Браунштейн (1937, совместно с М. Г. Крицман) открыл реакцию переаминирования как промежуточное звено биосинтеза и распада аминокислот; О. Г. Варбург выяснил природу фермента, реагирующего с кислородом в тканях. В 1930-х годах завершился основной этап изучения природы основополагающих биохимических процессов. Установлена последовательность реакций распада углеводов в ходе гликолиза и брожения (О. Мейергоф, Я. О. Парнас), превращения пировиноградной кислоты в циклах ди- и трикарбоновых кислот (А. Сент-Дъёрдъи, Х. А. Кребс, 1937), открыто фоторазложение воды (Р. Хилл, Великобритания, 1937). Работами В. И. Палладина, А. Н. Баха, Г. Виланда, шведского биохимика Т. Тунберга, О. Г. Варбурга и английского биохимика Д. Кейлина заложены основы современных представлений о внутриклеточном дыхании. Из мышечных экстрактов были выделены аденозинтрифосфат (АТФ) и креатинфосфат. В СССР работами В. А. Энгельгардта (1930) и В. А. Белицера (1939) по окислительному фосфорилированию и количественной характеристике этого процесса было положено начало современной биоэнергетике. Позднее Ф. Липман разработал представления о богатых энергией фосфорных соединениях, установил центральную роль АТФ в биоэнергетике клетки. Открытие ДНК у растений (российские биохимики А. Н. Белозерский и А. Р. Кизель, 1936) способствовало признанию биохимического единства растительного и животного мира. В 1948 году А. А. Красновский открыл реакцию обратимого фотохимического восстановления хлорофилла, значительные успехи были достигнуты в выяснении механизма фотосинтеза (М. Калвин).

Дальнейшее развитие биохимии связано с изучением структуры и функции ряда белков, разработкой основных положений теории ферментативного катализа, установлением принципиальных схем обмена веществ и др. Прогресс биохимии во 2-й половине 20 века в значительной степени обусловлен развитием новых методов. Благодаря усовершенствованию методов хроматографии и электрофореза стала возможной расшифровка последовательностей аминокислот в белках и нуклеотидов в нуклеиновых кислотах. Рентгеноструктурный анализ позволил определить пространственную структуру молекул ряда белков, ДНК и других соединений. С помощью электронной микроскопии были открыты ранее неизвестные клеточные структуры, благодаря ультрацентрифугированию выделены различные клеточные органеллы (в том числе ядро, митохондрии, рибосомы); использование изотопных методов дало возможность понять сложнейшие пути превращения веществ в организмах и т. д. Важное место в биохимических исследованиях заняли различные виды радио- и оптической спектроскопии, масс-спектроскопии. Л. Полинг (1951, совместно с Р. Кори) сформулировал представления о вторичной структуре белка, Ф. Сенгер расшифровал (1953) структуру белкового гормона инсулина, а Дж. Кендрю (1960) определил пространственную структуру молекулы миоглобина. Благодаря усовершенствованию методов исследования было внесено много нового в представления о структуре ферментов, формировании их активного центра, об их работе в составе сложных комплексов. После установления роли ДНК как вещества наследственности (О. Эвери, 1944) особое внимание обращается на нуклеиновые кислоты и их участие в процессе передачи признаков организма по наследству. В 1953 году Дж. Уотсон и Ф. Крик предложили модель пространственной структуры ДНК (так называемая двойная спираль), увязав её строение с биологической функцией. Это событие явилось переломным моментом в развитии биохимии и биологии в целом и послужило основанием для выделения из биохимии новой науки - молекулярной биологии. Исследования по структуре нуклеиновых кислот, их роли в биосинтезе белка и явлениях наследственности связаны также с именами Э. Чаргаффа, А. Корнберга, С. Очоа, Х. Г. Корана, Ф. Сенгера, Ф. Жакоба и Ж. Моно, а также российских учёных А. Н. Белозерского, А. А. Баева, Р. Б. Хесина-Лурье и др. Изучение структуры биополимеров, анализ действия биологически активных низкомолекулярных природных соединений (витамины, гормоны, алкалоиды, антибиотики и др.) привели к необходимости установления связи между строением вещества и его биологической функцией. В связи с этим получили развитие исследования на грани биологической и органической химии. Это направление стало называться биоорганической химией. В 1950-х годах на стыке биохимии и неорганической химии как самостоятельная дисциплина сформировалась бионеорганическая химия.

К числу несомненных успехов биохимии относятся: открытие участия биологических мембран в генерации энергии и последующие исследования в области биоэнергетики; установление путей превращения наиболее важных продуктов обмена веществ; познание механизмов передачи нервного возбуждения, биохимических основ высшей нервной деятельности; выяснение механизмов передачи генетической информации, регуляции важнейших биохимических процессов в живых организмах (клеточная и межклеточная сигнализация) и многие другие.

Современное развитие биохимии. Биохимия является неотъемлемой частью физико-химической биологии - комплекса взаимосвязанных и тесно переплетённых между собой наук, который включает также биофизику, биоорганическую химию, молекулярную и клеточную биологию и др., изучающих физические и химические основы живой материи. Биохимические исследования охватывают широкий круг проблем, решение которых осуществляется на стыке нескольких наук. Например, биохимическая генетика изучает вещества и процессы, участвующие в реализации генетической информации, а также роль различных генов в регуляции биохимических процессов в норме и при различных генетических нарушениях метаболизма. Биохимическая фармакология исследует молекулярные механизмы действия лекарственных средств, способствуя разработке более совершенных и безопасных препаратов, иммунохимия - структуру, свойства и взаимодействия антител (иммуноглобулинов) и антигенов. На современном этапе биохимия характеризуется активным привлечением широкого методического арсенала смежных дисциплин. Даже такой традиционный раздел биохимии, как энзимология, при характеристике биологической роли конкретного фермента, редко обходится без направленного мутагенеза, выключения гена, кодирующего исследуемый фермент в живых организмах, или, наоборот, его повышенной экспрессии.

Хотя основные пути и общие принципы обмена веществ и энергии в живых системах можно считать установленными, множество деталей метаболизма и особенно его регуляции остаются неизвестными. Особенно актуально выяснение причин нарушений метаболизма, приводящих к тяжёлым «биохимическим» болезням (различные формы диабета, атеросклероз, злокачественное перерождение клеток, нейродегенеративные заболевания, циррозы и многие др.), и научное обоснование его направленной коррекции (создание лекарственных средств, диетические рекомендации). Использование биохимических методов позволяет выявить важные биологические маркеры различных заболеваний и предложить эффективные способы их диагностики и лечения. Так, определение в крови кардиоспецифичных белков и ферментов (тропонин Т и изофермент креатинкиназы миокарда) позволяет осуществлять раннюю диагностику инфаркта миокарда. Важная роль отводится биохимии питания, изучающей химические и биохимические компоненты пищи, их ценность и значение для здоровья человека, влияние хранения пищевых продуктов и их обработки на качество пищи. Системный подход в изучении всей совокупности биологических макромолекул и низкомолекулярных метаболитов конкретной клетки, ткани, органа или организма определённого вида привёл к появлению новых дисциплин. К их числу относятся геномика (исследует всю совокупность генов организмов и особенности их экспрессии), транскриптомика (устанавливает количественный и качественный состав молекул РНК), протеомика (анализирует всё многообразие белковых молекул, характерных для организма) и метаболомика (изучает все метаболиты организма или его отдельных клеток и органов, образующиеся в процессе жизнедеятельности), активно использующие биохимическую стратегию и биохимические методы исследований. Получила развитие прикладная область геномики и протеомики - биоинженерия, связанная с направленным конструированием генов и белков. Названные выше направления порождены в равной мере биохимией, молекулярной биологией, генетикой и биоорганической химией.

Научные учреждения, общества и периодические издания . Научные исследования в области биохимии проводятся во многих специализированных научно-исследовательских институтах и лабораториях. В России они находятся в системе РАН (в том числе Институт биохимии, Институт эволюционной физиологии и биохимии, Институт физиологии растений, Институт биохимии и физиологии микроорганизмов, Сибирский институт физиологии и биохимии растений, Институт молекулярной биологии, Институт биоорганической химии), отраслевых академий (в том числе Институт биомедхимии РАМН), ряда министерств. Работы по биохимии ведутся в лабораториях и на многочисленных кафедрах биохимических вузов. Специалистов-биохимиков и за рубежом, и в Российской Федерации готовят на химических и биологических факультетах университетов, имеющих специальные кафедры; биохимиков более узкого профиля - в медицинских, технологических, сельскохозяйственных и других вузах.

В большинстве стран существуют научные биохимические общества, объединённые в Европейскую федерацию биохимиков (Federation of European Biochemical Societies, FEBS) и в Международный союз биохимиков и молекулярных биологов (International Union of Biochemistry, IUBMB). Эти организации собирают симпозиумы, конференции, а также конгрессы. В России Всесоюзное биохимическое общество с многочисленными республиканскими и городскими отделениями было создано в 1959 году (с 2002 года Общество биохимиков и молекулярных биологов).

Велико количество периодических изданий, в которых публикуются работы по биохимии. Наиболее известны: «Journal of Biological Chemistry» (Balt., 1905), «Biochemistry» (Wash., 1964), «Biochemical Journal» (L., 1906), «Phytochemistry» (Oxf.; N. Y., 1962), «Biochimica et Biophisica Acta» (Amst., 1947) и многие др.; ежегодники: «Annual Review of Biochemistry» (Stanford, 1932), «Advances in Enzymology and Related Subjects of Biochemistry» (N. Y., 1945), «Advances in Protein Chemistry» (N.Y., 1945), «Febs Journal» (первоначально «European Journal of Biochemistry», Oxf., 1967), «Febs letters» (Amst., 1968), «Nucleic Acids Research» (Oxf., 1974), «Biochimie» (Р., 1914; Amst., 1986), «Trends in Biochemical Sciences» (Elsevier, 1976) и др. В России результаты экспериментальных исследований печатаются в журналах «Биохимия» (М., 1936), «Физиология растений» (М., 1954), «Журнал эволюционной биохимии и физиологии» (СПб., 1965), «Прикладная биохимия и микробиология» (М., 1965), «Биологические мембраны» (М., 1984), «Нейрохимия» (М., 1982) и др., обзорные работы по биохимии - в журналах «Успехи современной биологии» (М., 1932), «Успехи химии» (М., 1932) и др.; ежегодник «Успехи биологической химии» (М., 1950).

Лит.: Джуа М. История химии. М., 1975; Шамин А. М. История химии белка. М., 1977; он же. История биологической химии. М., 1994; Основы биохимии: В 3 т. М., 1981; Страйер Л. Биохимия: В 3 т. М., 1984-1985; Ленинджер А. Основы биохимии: В 3 т. М., 1985; Азимов А. Краткая история биологии. М., 2002; Эллиот В., Эллиот Д. Биохимия и молекулярная биология. М., 2002; Berg J.М., Tymoczko J.L., Stryer L. Biochemistry. 5th ed. N. Y., 2002; Биохимия человека: В 2 т. 2-е изд. М., 2004; Березов Т. Т., Коровкин Б. Ф. Биологическая химия. 3-е изд. М., 2004; Voet D., VoetJ. Biochemistry. 3rd ed. N. Y., 2004; Nelson D. L., Cox М. М. Lehninger principles of biochemistry. 4th ed. N. Y., 2005; Elliott W., Elliott D. Biochemistry and molecular biology. 3rd ed. Oxf., 2005; Garrett R.Н., Grisham С. М. Biochemistry. 3rd ed. Belmont, 2005.

А. Д. Виноградов, А. Е. Медведев.

Биохимия (от греч. «bios» ‒ «жизнь», биологическая или физиологическая) – это наука, которая изучает химические процессы внутри клетки, влияющие на жизнедеятельность всего организма или его определенных органов. Целью науки биохимии является познание химических элементов, состава и процесса обмена веществ, способов его регуляции в клетке. По другим определениям, биохимией называется наука о химической структуре клеток и организмах живых существ.

Чтобы понять, для чего нужна биохимия, представим науки в виде элементарной таблицы.

Как видно, основой для всех наук есть анатомия, гистология и цитология, которые изучают все живое. На их основе построены биохимия, физиология и патофизиология, где познают функционирование организмов и химические процессы внутри них. Без этих наук не смогут существовать и остальные, что представлены в верхнем секторе.

Есть и другой подход, по которому науки делятся на 3 типа (уровня):

  • Те, что изучают клеточный, молекулярный и тканный уровень жизни (науки анатомия, гистология, биохимия, биофизика);
  • Изучают патологические процессы и заболевания (патофизиология, патологическая анатомия);
  • Диагностируют внешнюю реакцию организма на заболевания (клинические науки, такие как терапия и хирургия).

Вот так мы выяснили, какое место среди наук занимает биохимия, или, как ее еще называют, медицинская биохимия. Ведь любое ненормальное поведение организма, процесс его метаболизма повлияет на химическую структуру клеток и проявит себя во время проведения БАК.

Для чего сдают анализы? Что показывает биохимический анализ крови?

Биохимия крови – это метод диагностирования в лабораторных условиях, что показывает заболевания в различных направлениях медицины (например, терапии, гинекологии, эндокринологии) и помогает определить работу внутренних органов и качество обмена белков, липидов и углеводов, а также достаточность в организме микроэлементов.

БАК, или биохимическое исследование крови, – это анализ, с помощью которого получают самую широкую информацию касательно разнообразных заболеваний. По его результатам можно узнать функциональное состояние организма и каждого органа в отдельном случае, ведь любой недуг, атакующий человека, так или иначе проявится в результатах БАК.

Что входит в состав биохимии?

Не очень удобно, да и не нужно, проводить биохимические исследования абсолютно всех показателей, и кроме того, чем их больше, тем больше нужно крови, а также и дороже они вам обойдутся. Потому различают стандартный и комплексный БАКи. Стандартный назначается в большинстве случаев, а вот расширенный с дополнительными показателями назначает врач, если ему нужно выяснить дополнительные нюансы в зависимости от симптомов недуга и целей анализа.

Базовые показатели.

  1. Общий белок в крови (TP, Total Protein).
  2. Билирубин.
  3. Глюкоза, липаза.
  4. АлАТ (Аланинаминотрансфераза, АЛТ) и АсАТ (Аспартатаминотрансфераза, АСТ).
  5. Креатинин.
  6. Мочевина.
  7. Электролиты (Калий, K/Кальций, Сa/Натрий, Na/ Хлор, Cl/Магний, Mg).
  8. Холестерин общий.

Развернутый профиль включает в себя любые из этих дополнительных показателей (а также другие, очень специфические и узконаправленные, не обозначенные в этом перечне).

Биохимический общетерапевтический стандарт: нормы взрослых

Биохимический анализ крови Нормы
(БАК)
Общий белок от 63 до 85 г/литр
Билирубин (прямой, непрямой, общий) общий до 5-21 мкмоль/литр
прямой – до 7,9 ммоль/литр
непрямой ‒ рассчитывается, как разница между прямым и непрямым показателями
Глюкоза от 3,5 до 5,5 ммоль/литр
Липаза до 490 Ед/литр
АлАТ и АсАТ для мужчин – до 41 Ед/литр
для женщин – до 31 Ед/литр
Креатининфосфокиназа до 180 Ед/литр
ALKP до 260 Ед/литр
Мочевина от 2,1 до 8,3 ммоль/л
Амилаза от 28 до 100 Ед/л
Креатинин для мужчин – от 62 до 144 мкмоль/литр
для женщин – от 44 до 97 мкмоль/литр
Билирубин от 8,48 до 20,58 мкмоль/литр
ЛДГ от 120-240 Ед/литр
Холестерин от 2,97 до 8,79 ммоль/литр
Электролиты К от 3,5 до 5,1 ммоль/литр
Сa от 1,17 до 1,29 ммоль/литр
Na от 139 до 155 ммоль/литр
Cl от 98 до 107 ммоль/литр
Mg от 0,66 до 1,07 ммоль/литр

Расшифровка биохимии

Расшифровка данных, которые были описаны выше, проводится по определенным значениям и нормам.

  1. Общий белок – это количество всего протеина, находящегося в человеческом организме. Превышение нормы указывает на различные воспаления в организме (на проблемы печени, почек, мочеполовой системы, ожогового недуга или на рак), при дегидратации (обезвоживании) во время рвоты, потоотделении в особо больших размерах, кишечной непроходимости или миеломной болезни, недостаток – на дисбаланс в питательном рационе, длительное голодание, болезнь кишечника, печени или при нарушении синтеза в результате наследственных заболеваний.

  2. Альбумин
    ‒ это содержащаяся в крови белковая фракция с высокой концентрацией. Он связывает воду, и его низкое количество приводит к развитию отеков – вода не задерживается в крови и попадает в ткани. Обычно, если снижается белок, то и количество альбумина падает.
  3. Анализ билирубина в плазме общий (прямой и непрямой) – это диагностика пигмента, который образуется после расщепления гемоглобина (для человека он токсический). Гипербилирубинемия (превышение уровня билирубина) называется желтухой, причем выделяют клиническую желтуху надпеченочную (в том числе у новорожденных), печеночно-клеточную и подпеченочную. Она указывает на анемию, обширные кровоизлияния впоследствии гемолитической анемии, гепатит, разрушение печени, онкологию и другие заболевания. Она страшит патологией печени, но может повыситься и у человека, перенесшего удары и травмы.
  4. Глюкоза. Ее уровень определяет углеводный обмен, то есть энергию в организме, и как работает поджелудочная железа. Если глюкозы очень много – это может быть диабет, физические нагрузки или повлиял прием гормональных препаратов, если мало – гиперфункция поджелудочной железы, болезни эндокринной системы.
  5. Липаза – это расщепляющий жиры фермент, который играет важную роль в обмене веществ. Его повышение свидетельствует о болезни поджелудочной.
  6. АЛТ – «печеночный маркер», по нему отслеживают патологические процессы печени. Повышенная норма информирует о проблемах в работе сердца, печении или гепатите (вирусном).
  7. АСТ – «сердечный маркер», по нему видно качество работы сердца. Превышение нормы свидетельствует о нарушении работы сердца и гепатите.
  8. Креатинин – дает информацию о функционировании почек. Повышен, если у человека есть острое или хроническое заболевание почек или наблюдается разрушение ткани мышечной, эндокринных нарушениях. Завышен у людей, которые употребляют много мясных продуктов. И потому креатинин понижен у вегетарианцев, а также у беременных, но очень сильно на диагностику не повлияет.
  9. Анализ мочевины – это исследование продуктов белкового обмена, работы печени и почек. Завышение показателя происходит при нарушении в работе почек, когда они не справляются с выведением жидкости из организма, а снижение характерно для беременных, при диете и нарушениях, связанных с работой печени.
  10. Ггт в биохимическом анализе информирует об обмене аминокислот в организме. Его высокий показатель виден при алкоголизме, а также, если поражается кровь токсинами или предполагается дисфункция печени и желчевыводящих путей. Низкий – если есть хронические заболевания печени.
  11. Лдг в исследовании характеризует протекание энергетических процессов гликолиза и лактата. Высокий показатель указывает на негативное воздействие на печень, легкие, сердце, поджелудочную железу или почки (заболевания пневмония, инфаркт, панкреатит и прочие). Низкий показатель лактатдегидрогеназы, как и низкий креатинин, на диагностику не повлияет. Если ЛДГ повышен, причины у женщин могут быть следующие: повышенные физические нагрузки и беременность. У новорожденных тоже этот показатель слегка завышен.
  12. Электролитный баланс указывает на нормальный процесс обмена веществ в клетку и из клетки назад, в том числе и процесс работы сердца. Алиментарные нарушения зачастую стают главной причиной дисбаланса электролитов, но также это может быть рвота, диарея, гормональный сбой или сбой в работе почек.
  13. Холестерол (холестерин) общий – повышается, если у человека ожирение, атеросклероз, дисфункции печени, щитовидной железы, и снижается, когда человек садится на безжировую диету, при септисе или другой инфекции.
  14. Амилаза – фермент, содержащийся в слюне и поджелудочной. Высокий уровень покажет, если имеются холецистит, признаки сахарного диабета, перитонита, паротита и панкреатита. Также повысится, если употреблять алкогольные напитки или препараты – глюкокортикоиды, также характерно для беременных во время токсикоза.

Показателей биохимии очень много и основных, и дополнительных, также проводится комплексная биохимия, в которую входят как основные, так и дополнительные показатели на усмотрение врача.

Сдать биохимию натощак или нет: как подготовиться к анализу?

Анализ крови на Бх – ответственный процесс, и готовиться к нему нужно заранее и со всей серьезностью.


Эти меры необходимы, чтобы анализ был более точным и никакие дополнительные факторы на него не повлияли. В ином случае ‒ придется пересдавать анализы, так как малейшие изменения условий значительно повлияют на процесс метаболизма.

Откуда берут и как сдавать кровь

Сдача крови на биохимию происходит путем забора шприцом крови из вены на локтевом изгибе, иногда из вены на предплечье или кисти. В среднем достаточно 5-10 мл крови для того, чтобы сделать основные показатели. Если нужен развернутый анализ биохимии – тогда берется и объем крови больше.

Норма показателей биохимии на специализированном оборудовании от разных производителей может несколько отличаться от средних границ. Экспресс-метод подразумевает получение результатов в течение одного дня.

Процедура забора крови почти безболезненна: присаживаетесь, процедурная медсестра готовит шприц, налаживает на руку жгут, обрабатывает место, где будет делаться укол, антисептиком и берет образец крови.

Полученную помещает в пробирку и отдают в лабораторию на диагностику. Врач-лаборант размещает образец плазмы в специальный прибор, который создан для определения с высокой точностью показателей биохимии. Он же проводит обработку и хранение крови, определяет дозирование и порядок проведения биохимии, диагностирует полученные результаты, в зависимости от тех показателей, которые потребовал лечащий врач, и оформляет бланк результатов биохимии и лабораторно-химический анализ.

Лабораторно-химический анализ передают в течение дня лечащему врачу, который ставит диагноз и назначает лечение.

БАК со своим множеством разнообразных показателей дает возможность увидеть обширную клиническую картину конкретного человека и конкретной болезни.

Животных, растений, грибов, вирусов, бактерий. Численность представителей каждого царства настолько велика, что остается только удивляться, как мы все помещаемся на Земле. Но, несмотря на такое многообразие, все живое на планете объединяет несколько основных особенностей.

Общность всего живого

Доказательства складываются из нескольких основных особенностей живых организмов:

  • необходимости в питании (потреблении энергии и преобразовании ее внутри организма);
  • потребности в дыхании ;
  • способности к размножению;
  • росте и развитии в течение жизненного цикла.

Любой из перечисленных процессов представлен в организме массой химических реакций. Ежесекундно внутри любого живого существа, а тем более человека, происходят сотни реакций синтеза и распада органических молекул. Структура, особенности химического воздействия, взаимодействие друг с другом, синтез, распад и построение новых структур молекул органического и неорганического строения - все это предмет изучения большой, интересной и разнообразной науки. Биохимия - это молодая прогрессивная область знания, изучающая все происходящие внутри живых существ.

Объект

Объектом изучения биохимии являются только живые организмы и все происходящие в них процессы жизнедеятельности. А конкретно - химические реакции, происходящие при поглощении пищи, выделении продуктов жизнедеятельности, росте и развитии. Так, основы биохимии составляет изучение:

  1. Неклеточных форм жизни - вирусов.
  2. Прокариотических клеток бактерий.
  3. Высших и низших растений.
  4. Животных всех известных классов.
  5. Организма человека.

При этом сама биохимия - это наука достаточно молодая, возникшая только с накоплением достаточного количества знаний о внутренних процессах в живых существах. Ее возникновение и обособление датируется второй половиной XIX века.

Современные разделы биохимии

На современном этапе развития биохимия включает в себя несколько основных разделов, которые представлены в таблице.

Раздел

Определение

Объект изучения

Динамическая биохимия

Изучает химические реакции, лежащие в основе взаимопревращения молекул внутри организма

Метаболиты - простые молекулы и их производные, образующиеся в результате обмена энергии; моносахариды, жирные кислоты, нуклеотиды, аминокислоты

Статическая биохимия

Изучает химический состав внутри организмов и структуру молекул

Витамины, белки, углеводы, нуклеиновые кислоты, аминокислоты, нуклеотиды, липиды, гормоны

Биоэнергетика

Занимается изучением поглощения, накопления и преобразования энергии в живых биологических системах

Один из разделов динамической биохимии

Функциональная биохимия

Изучает подробности всех физиологических процессов организма

Питание и пищеварение, кислотно-щелочного баланса, мышечные сокращения, проведение нервного импульса, регуляция печени и почек, действие иммунной и лимфатической систем и так далее

Медицинская биохимия (биохимия человека)

Изучает процессы метаболизма в организме людей (в здоровых организмах и при заболеваниях)

Эксперименты на животных позволяют вывести патогенных бактерий, вызывающих заболевания у людей, и найти способы борьбы с ними

Таким образом, можно сказать, что биохимия - это целый комплекс маленьких наук, которые охватывают все многообразие сложнейших внутренних процессов живых систем.

Дочерние науки

С течением времени накопилось настолько много различных знаний и сформировалось столько научных навыков обработки результатов исследований, выведения бактериальных колоний, и РНК, встраивания заведомо известных участков генома с заданными свойствами и так далее, что появилась необходимость в дополнительных науках, которые являются дочерними для биохимии. Это такие науки, как:

  • молекулярная биология;
  • генная инженерия;
  • генная хирургия;
  • молекулярная генетика;
  • энзимология;
  • иммунология;
  • молекулярная биофизика.

Каждая из перечисленных областей знаний имеет массу достижений в изучении биопроцессов в живых биологических системах, поэтому является очень важной. Все они относятся к наукам XX века.

Причины интенсивного развития биохимии и дочерних наук

В 1958 г. Корана открыл ген и его структуру, после чего в 1961 г. был расшифрован генетический код. Затем было установлено строение молекулы ДНК - двухцепочечная структура, способная к редупликации (самовоспроизведению). Были описаны все тонкости процессов метаболизма (анаболизм и катаболизм), изучена третичная и четвертичная структура белковой молекулы. И это далеко не полный список грандиозных по значимости открытий XX века, которые и составляют основу биохимии. Все эти открытия принадлежат биохимикам и самой науке как таковой. Поэтому предпосылок для ее развития множество. Можно выделить несколько современных причин ее динамичности и интенсивности в становлении.

  1. Выявлены основы большинства химических процессов, происходящих в живых организмах.
  2. Сформулирован принцип единства в большинстве физиологических и энергетических процессов для всех живых существ (например, они одинаковы у бактерий и человека).
  3. Медицинская биохимия позволяет получить ключ к лечению массы различных сложных и опасных заболеваний.
  4. При помощи биохимии стало возможным подобраться к решению самых глобальных вопросов биологии и медицины.

Отсюда вывод: биохимия - это прогрессивная, важная и очень широко спектральная наука, позволяющая найти ответы на многие вопросы человечества.

Биохимия в России

В нашей стране биохимия является такой же прогрессивной и важной наукой, как и в целом мире. На территории России действуют Институт биохимии им. А. Н. Баха РАН, Институт биохимии и физиологии микроорганизмов им. Г. К. Скрябина РАН, НИИ биохимии СО РАН. Нашим ученым принадлежит большая роль и множество заслуг в истории развития науки. Так, например, был открыт метод иммуноэлектрофареза, механизмы гликолиза, сформулирован принцип комплементарности нуклеотидов в структуре молекулы ДНК и сделан ряд других важных открытий. В конце XIX и начале XX в. в основном были сформированы не целые институты, а кафедра биохимии в некоторых из вузов. Однако вскоре появилась необходимость расширить пространство для изучения данной науки в связи с ее интенсивным развитием.

Биохимические процессы растений

Биохимия растений неразрывно связана с физиологическими процессами. В целом, предметом изучения биохимии и физиологии растений является:

  • жизнедеятельность растительной клетки;
  • фотосинтез;
  • дыхание;
  • водный режим растений;
  • минеральное питание;
  • качество урожая и физиология его формирования;
  • устойчивость растений к вредителям и неблагоприятным условиям окружающей среды.

Значение для сельского хозяйства

Знание глубинных процессов биохимии в растительных клетках и тканях позволяют повышать качество и количество урожая культурных сельскохозяйственных растений, являющихся массовыми производителями важных продуктов питания для всего человечества. Кроме того, физиология и биохимия растений позволяют находить пути решения проблем заражения вредителями, устойчивости растений к неблагоприятным условиям среды, дают возможность повысить качество продукции растениеводства.