I s диаграмма воды и пара. Is (hs)-диаграмма состояния воды и водяного пара

Справочный материал

Диаграмма водяного пара

Практическое занятие № 9

Цель работы: изучить процесс парообразования и представления в h-s диаграмме.

H , s-диагра́мма (чит. «аш-эс-диаграмма») (написание строчными буквами:«h,s-диаграмма»,) - диаграмма теплофизических свойств жидкости и газа (в основном воды и водяного пара), показывающая характер изменения различных свойств, в зависимости от параметров состояния.

В основном большое применение получили h, s-диаграммы воды и водяного пара, так как в качестве рабочего тела втеплотехнике чаще всего применяются именно вода и водяной пар, из-за их сравнительной дешевизны и доступности, причём наиболее пристальное внимание оказывается именно той части диаграммы, в которой вода впарообразном состоянии, так как в жидком состоянии она практически несжимаема.

Ещё в 1904 году немецкий теплофизик Рихард Молье разработал специальную диаграмму для упрощения и облегчения решений практических задач по теплотехнике, в которой в координатах энтальпии (h) и энтропии (s) графически отображаются сведения из таблиц состояний. В 1906 году в Берлине была издана его книга «Новые таблицы и диаграммы для водяного пара». Впоследствии такая диаграмма получила название Диаграмма Молье. В СССР некоторое время было принято название i, s-диаграмма, а в настоящее время - h, s-диаграмма.

Структура h, s-диаграммы

H, s-диаграммы чаще всего содержат в себе данные о свойствах воды в жидком и газообразном состояниях, так как они представляют наибольший интерес с точки зрения теплотехники.

§ Степень сухости - это параметр, показывающий массовую долю насыщенного пара в смеси воды и водяного пара. Значение x = 0 соответствует воде в момент кипения (насыщения). Значение х = 1 , показывает, что в смеси присутствует только пар. При нанесении соответствующих точек в координатах (h,s) , взятых из таблиц насыщения справочников свойств воды и водяного пара, при их соединении получаются кривые, соответствующие определённым степеням сухости. В таком случае, линия х = 0 является нижней пограничной кривой, а х = 1 - верхней пограничной кривой. Область, заключённая между этими кривыми, является областью влажного пара. Область ниже кривой х = 0 , которая стягивается практически в прямую линию (не показана), соответствует воде. Область выше кривой х = 1 - соответствует состоянию перегретого пара.

§ Критическая точка (К ). При определённом, достаточно высоком давлении, называемом критическим, свойства воды и пара становятся идентичными. То есть исчезают физические различия между жидким и газообразным состояниями вещества. Такое состояние называют критическим состоянием вещества, которому соответствует положение критической точки. Следует заметить, что она на пограничной кривой лежит гораздо левее максимума этой кривой.



§ Изотерма - изолиния, построенная методом объединения точек по значениям энтальпии и энтропии, соответствующих определённой температуре. Изотермы пересекают пограничные кривые с изломом и, по мере удаления от верхней пограничной кривой, асимптотически приближаются к горизонтали. На схеме для упрощения представлены только три изотермы: t + Δt ; t ; t - Δt .

§ Изобара - изолиния, построенная методом объединения точек по значениям энтальпии и энтропии, соответствующих определённому давлению. Изобары не имеют изломов при пересечении пограничных кривых. На схеме представлены только три изобары:

§ p + Δp ; p ; p - Δp .

§ Изохора - изолиния, построенная методом объединения точек по значениям энтальпии и энтропии, соответствующих определённому объёму. Изохоры на h, s-диаграмме в области перегретого пара, всегда проходит круче, чем изобары, и это облегчает их распознавание на одноцветных диаграммах. Построение изохор требует более кропотливой работы с таблицей состояний. На схеме представлены только три изохоры:

§ v - Δv ; v ; v + Δv .

Изотермы и изобары в области влажного пара совпадают по причине линейной зависимости в состоянии насыщения.

Определение параметров жидкости и пара по таблицам и h-s диаграмме

Таблицы для определения термодинамических свойств веществ различаются в зависимости от того, какое состояние рассматривается: однофазное или двухфазное. В таблицах для состояния насыщения приводятся удельные значения объема, энтальпии и энтропии воды и водяного пара (см. табл. 7 приложения); хладона R-22 (см. табл. 5 приложения); аммиака (см. табл. 6 приложения).

Параметры насыщенной жидкости (х = 0) отмечаются одним штрихом , Параметры сухого насыщенного пара (х = 1) отмечаются двумя штрихами .

Для определения свойств каждой из фаз в состоянии насыщения надо знать только один параметр – давление или температуру, так как при этих условиях параметры однозначно связаны между собой. В этих же таблицах приводится удельная теплота парообразования r.

Для расчета параметров влажного пара необходимо знать дополнительно степень сухости пара х.

Энтальпия h, энтропия s и удельный объем v влажного пара определяются по формулам: h = h˝·x + h΄·(1–x) = h΄+ r · x,

s = s˝∙x + s΄·(1–x) = s΄+ r·x/Т S ,

v = v˝· x + v΄· (1–x).

Степень сухости пара определяется по одной из следующих формул:

Для определения свойств ненасыщенной жидкости и перегретого пара (однофазное состояние) нужно знать два параметра (обычно давление и температуру). В ячейке таблицы, соответствующей данному состоянию, помещены удельные значения объема v, энтальпии h и энтропии s.

На h-s диаграмме обычно изображаются:

линии изобар (p = const);

По этим данным определяются энтальпия пара h и энтропия s:

h = h΄+ r·x = 504,7 + 2202,2·0,9 = 2486,68 кДж/кг.

s = s΄+ (r·x)/T S = 1,5301 + (2202,2·0,9)/(120,23+273) = 6,57 кДж/(кг·К).

Температура насыщения: t S = 120,23 ºС.

Задание: изучить структурудиаграммы состояния водяного пара

Вода и. водяной пар широко применяются в энергетике, в отоплении, вентиляции, горячем водоснабжении.

Водяной пар - реальный газ. Он может быть влажным, сухим насыщенным и перегретым. Уравнения состояния реальных тазов сложны, поэтому в теплотехнических расчетах предпочитают использовать таблицы и диаграммы. Особое значение для технических расчетов процессов с водяным паром имеет h,s -диаграмма водяного пара.

В диаграмме h,S нанесена (рис. 5.1) верхняя пограничная кривая (степень сухости пара X=1) соответствующая сухому насыщенному пару. Выше этой кривой располагается область перегретого пара.

Рисунок 5.1 Диаграмма h,S водяного пара

Ниже влажного насыщенного пара. В область влажного насыщенного пара нанесены кривые сухости (X=0,95; Х=0,90; X=0.85 и т.д.)

В координатных, осях h,S (рис.5.1) нанесены кривые простейших процессов р=сonst (изобары); v= сonst (изохоры); t =сonst (и термы); любая вертикальная линия (рис.5.2.) изображает адиабатный процесс (S=const).

В области влажного насыщенного пара изотермы (t =сonst)совпадают с кривыми изобары (р=сonst), так как парообразование происходит при постоянном давлении и при постоянной температуре. На верхней пограничной кривой направление изотермы меняется и в пограничной кривой направление изотермы меняется, и области перегретого пара изотермы отклоняются вправо, и не совпадают с изобарами.

Практически применяется часть диаграммы h,S , когда X 0,5 , которая заключена в рамку. Эта часть диаграммы приведена в прило­жении и на рис.5.2.

Состояние перегретого пара на диаграмме h,S определяется двумя параметрами (р 1 и t 1 или р 1 и v 1), а влажного насыщенного па­ра - одним параметром и степенью сухости пара Х. По 2 заданным па­раметрам р 1 и t 1 в области перегретого пара находим точку I (рис. 5.2.), соответствующую заданному состоянию водяного пара. Для этого состояния из диаграммы можно найти все другие параметры (h 1 ,s 1 ,v 1).

З
начение внутренней анергии подсчитывается по формуле

Зная вид термодинамического процесса, двигаются по нему до пе­ресечения с заданным конечным параметром и находят на диаграмме конечное состояние пара..Определив параметры коночного состояния, можно рассчитывать показатели процесса (работу, теплоту, изменение параметров)

Изменение внутренней энергии
и работу в любом процессе подсчи­тывают по формулам

Рассмотрим основные задачи, решаемые по h,S диаграмме.

Изохорный процесс (v= const)

Количество теплоты, участвующая в процессе, определяется по формуле 5.2,. для определения изменения внутренней энергии.

Работа изохорного процесса равна нулю.

Изобарный процесс (р=сonst), количество теплоты, участвующая в процессе определяется по формуле

И
зменение внутренней энергии по формуле 5.2 или по формуле 5.3

Изотермный процесс (t =сonst).

Теплоту и работу процесса находят по формуле:

5.6

Адиабатный процесс
. На рис. 5.2. представлен адиабатный процесс, протекающий без теплообмена с внешней среда. В адиабатном процессе энтропия не изменяется и очень часто этот процесс называется изоэнтропным.

Работа процесса происходит за счет изменения внутренней
.

Процесс при постоянной степени сухости (Х=сonst) решается также по диаграмме h,S (рисунок5.2)

Приблизительное количество определяется по формуле

5.7

Изменение внутренней энергии в процессе находят обычным способом по формуле 5.2

Работа процесса определяется по формуле 5.3.

Рисунок 5.2 Диаграмма h,S водяного пара

Теоретический паросиловой цикл (цикл Ренкина).

Для определения основных величин цикла - термического кпд, работы I кг пара, удельных расходов пара и теплоты - достаточно на диаграмме изобразить линию расширения пара в паровой турбине (линия 1-2 на рис.5.2.).

Т
ермический кпд цикла

-энтальпия конденсатора

Работа I кг пара

Удельный расход пара в кг на I кВт∙ч

5.9

Удельный расход теплоты в КДж на I кВт∙ч

5.10

Истечение и дросселирование.

Процесс истечения пара считается адиабатным процессом, который представлен на рис.5.2.

Теоретическую скорость истечения можно определить по формуле

5.11

-энтальпии пара начального и конечного состояния, в кДж/кг.

Расход пара определяется из уравнения неразрывности потока

5.12

Где А- истечение сечения сопла, м 2 ;

- плотность пара на выходе из сопла, кг/м 3 , определяется по диаграмме h,S водяного пара.

Если же истечение пара происходит - при
то теоретическая скорость пара в устье суживающего сопла будет равна критической и определяется по уравнению

Расход пара в этом случае будет максимальным и определяется по уравнению

5.13

где V кр - удельный объем пара при критическом давлении.

Площадь минимального сечения сопла при определяется по формуле

5.14

Для получения скорости пар выше критической применяется комбинированное сопло или сопло Лаваля (рис.5.4)

Рисунок 5.4 Схема сопла Лаваля

Площадь выходного сечения сопла

5.15

Д
лина расширяющейся части сопла определяется по уравнению

-соответственно диаметры выходного и минимального сечений;

-угол конусности расширяющейся части сопла.

Д
ействительная скорость истечения всегда меньше теоретической, так как процесс истечения связан с наличием трения.

Где
-коэффициент потери энергии в сопле;


-скоростной коэффициент сопла.

Пользуясь диаграммой h,S можно определить параметры в конце расширения.

Если дана начальная точка I (рис.5.5.) и коэффициент (или ), то, проводя адиабату 1-2, откладываем от точки 2 вверх от­резок 2
и проводя через точку 2 горизонталь до пересечения с конечной изобарой р 2 получаем точку Д, характеризующую состояние рабочего тела в конце действительного процесса истечения.

Если же даны начальное 1 и конечное Д состояния пара, то потери работы оп­ределяем проводя через точ­ку Д горизонталь до пере­сечения с адиабатой. Отно­шение отрезков 2g - 2/I-2 дает значение коэффициента потери энергии, а следова­тельно, и скоростного коэффициента.

Дросселирование - это необратимый процесс понижения давления в потоке при проходящем им местного сужения сечении. Процесс дросселирования считается адиабатным процессом и справедливо равенством.

5.18

Практически всегда можно обеспечить
и тогда
, т.е. энтальпия пара в начальном и конечном состояниях одинакова.

Задачи, связанные с дросселированием пара, обычно сводятся к определению параметров состояния пара после дросселирования. Так как в на­чальном и конечном состояниях энтальпия одинакова, то конечное состояние определяется пересечением горизонтали, проходящей через начальную точку I (рис.5,6) с изобарой конечного давления р 2 .

Рисунок 5.6. Процесс дросселирования на диаграмме h,S водяного пара

Задача 5.1. В кормозапарник подается водяной пар с абсолютным давлением 160 кПа со степенью сухости 0,95. Температура вытекаю­щего конденсата 70°С. Определить расход - пара на обработку 200 кг картофеля (Скр=3,55 кДж/(кгК)) если коэффициент полезного действия запарника составляет 0,75.

Решение. Теплота, затрачиваемая на нагревание картофеля, с уче­том кпд кормозапарника определяется по формуле

Где
конечная и начальная температуры продукта, °С.

=12°С

Расход пара равна:

Где
-энтальпии влажного насыщенного пара и конденсата. Энтальпия влажного насыщенного пара определяется в пересечении изобары р 1 =160 кПа о линией сухости X =0,95 на диаграмме h,S водяного пара.

Рисунок 5.7. Рисунок к задаче 5.1

=2585 кДж/кг;
=4,19 кДж/(кгК) -теплоемкость конденсата.

Задача 5.2 . Определить теп­лоту парообразования, если давление пара 160 кПа.

Решение. На изобаре р =I60kП при любом паросодержании берем точку I и рассматриваем изобарный процесс парообразования 1-2, для которого количество подведенной теплоты определяется по формуле

Рисунок 5.8 Рисунок к задаче 5.2

Задача 5.3. Определить внутренний диаметр паропровода, соединяющего котельную с кормоцехом, если в него необходимо подавать влажный насыщенный пар при абсолютном давлении 160 кПа со степенью сухости У =0,95 в количестве 0,2 кг/с. Скорость перемещения пара в паропроводе 30 м/с.

Рисунок 5.8. Рисунок к задаче 5.3

Задача 5.4 . I кг пара расширяется адиабатно от начальных параметров р 1 =0,9 МПа и t 1 = 500°C до р 2 =0,004 МПа, Найти значения
и работу расширения пара.

Задача 5.5. Перегретый водяной пар при абсолютном давлении 0,4 МПа и температуре t 1 =300°C адиабатно расширяется в комбинирован­ном сопле Лаваля до давления 0,1 МПа. Определить площади минималь­ного и выходного сечения сопла, если расход пара составляет 4 кг/с.

Решение. Выходное сечение сопла определяется по формуле

Для перегретого пара
, поэтому критическое давление пара в минимальном сечении сопла

По диаграмме h,S для адиабатного процесса расширения пара от начальных параметров р 1 =0,4 МПа и t 1 = 300°C определяем h 1 =3070кДж/кг;Критическая скорость в минимальном сечении

Максимальная скорость на выходе из сопла

Площадь минимального сечения

Площадь максимального сечения

Задача 5.6. Для вулканизации покрышек требуется сухой насыщенный пар с температурой 145°С, а центральная котельная ремонтной мастерской вырабатывает влажный насыщенный пар с параметрами Х =0,95 и р 1 =0,5 MПa. Что нужно делать с паром, чтобы его можно было использовать при вулканизации покрышек?

Задача 5.7 . В паровых системах отопления низкого давления применяется пар с давлением 29 кПа, а котельная вырабатывает пар с давлением 0,7 МПа со степенью сухости 0,9. Что необходимо делать, чтобы давление пара упало в системе до 29 кПа и какой должен быть диаметр трубы, чтобы скорость движения пара была 20 м/с?

Задача 5.8. Можно ли в результате дросселирования сухого насыщенного пара получить вновь сухой насыщенный пар меньшего давления?

Задача 5.9. Как изменяется термический кпд паросиловой установки (цикл Ренкина), если начальная температура перегретого пара повысилась от 300 до 500°С при неизменном начальном давлении p 1 =3,0 МПа и при разряжении в конденсаторе p 2 =0,0005 МПа.

При проведении технико-экономических расчётов для подбора оборудования в теплоэнергетике и других отраслях, и моделирования тепловых процессов, необходимы надёжные проверенные данные о теплофизических свойствах воды и водяного пара в широкой области давлений и температур.

Ещё в 1904 году немецкий теплофизик Рихард Молье разработал специальную диаграмму для упрощения и облегчения решений практических задач по теплотехнике, в которой в координатах энтальпии (h) и энтропии (s) графически отображаются сведения из таблиц состояний. s-диаграммы чаще всего содержат в себе данные о свойствах воды в жидком и газообразном состояниях, так как они представляют наибольший интерес с точки зрения теплотехники.

$h-s$ диаграмма воды и водяного пара.

Водяной пар для промышленных целей получают в парогенераторах (паровых котлах) различного типа, общим для которых является то, что процесс получения пара является изобарным. Температура кипения воды и образующегося из нее пара является при этом постоянной, она зависит только от давления парогенератора и называется температурой насыщения $t_н$.

Пар, температура которого равна температуре насыщения, называется насыщенным (пар находится в термодинамическом равновесии с кипящей жидкостью). Насыщенный пар, не содержащий примеси жидкости, называют сухим насыщенным паром . Смесь сухого насыщенного пара и кипящей жидкости называется влажным насыщенным паром . Массовая доля сухого насыщенного пара в этой смеси называется степенью сухости и обозначается x. Для сухого насыщенного пара $x=1$, для кипящей жидкости $x=0$, для влажного насыщенного пара $0

Под теплотой парообразования $r$ понимают количество теплоты, необходимое для превращения 1 кг кипящей жидкости при постоянном давлении (следовательно, и при постоянной температуре) в сухой насыщенный пар.

Параметры кипящей жидкости – удельный объем, энтальпия, энтропия – обозначаются, соответственно, $v"$, $h"$, $s"$, а параметры сухого насыщенного пара – $v""$, $h""$, $s""$. Параметры влажного насыщенного пара обычно обозначают $v_x$, $h_x$ и $s_x$ и определяют по следующим формулам как для смеси кипящей воды и сухого пара:

$$v_x=v""·x+v"·(1–x),$$ $$h_x=h""·x+h"·(1–x),$$ $$s_x=s""·x+s"·(1–x).$$

Параметры перегретого пара обозначают без каких-либо штрихов и индексов, т.е. $v$, $h$ и $s$.

Поскольку водяной пар получают в изобарном процессе, то количество теплоты, подводимой к рабочему телу, можно подсчитать как разность энтальпий в конце и начале процесса. Это очень удобно, т.к. позволяет обойтись без теплоемкости, которая в данном случае (реальный газ) зависит не только от температуры, но и от давления.

Теплота парообразования, учитывая сказанное, равна:

$$r=h""–h".$$

На рисунке представлена диаграмма $h-s$ водяного пара. На этой диаграмме показаны нижняя пограничная кривая ($х=0$) или линия кипящей жидкости и верхняя пограничная кривая ($х=1$) или линия сухого насыщенного пара. Пограничные кривые соединяются в критической точке $К$, обозначающей критическое состояние воды, когда нет различия между кипящей жидкостью и сухим паром. Пограничные линии делят диаграммы на области капельной жидкости (воды), влажного насыщенного пара и перегретого пара. В области влажного пара изобары и изотермы совпадают.


Изолинии на $h-s$ диаграмме воды и водяного пара.

С развитием современной электронно-вычислительной техники и появлением доступных компьютеров и приложений, большое распространение получили hs-диаграммы в электронном виде.

Например симулятор диаграмм HS, TS, PS, PT, PV для воды и водяного пара с расчетом теплофизических свойств по формуляру IAPWS-IF97 и дополнений к нему.

В зависимости от положения курсора (управление мышью и стрелками клавы) выводятся p, T, h, s, v, x выбранной точки. Возможен также ручной ввод данных и перемещения для режимов: p-const, T-const, h-const, s-const, v-const, x-const. В симуляторе присутствует возможность построения и просмотра термодинамических графиков с сохранением в файл. Изменение масштаба - с помощью ползунка или колесика мыши. Данная программа является самым наглядным и удобным способом нахождения термодинамических параметров воды и водяного пара, к тому же она бесплатная.

ВОДЯНОЙ ПАР. ДИАГРАММА H,S ВОДЯНОГО ПАРА. ИССЛЕДОВАНИЕ ПАРОВЫХ ПРОЦЕССОВ ПО ДИАГРАММЕ H,s

Вода и. водяной пар широко применяются в энергетике, в отоплении, вентиляции, горячем водоснабжении.

Водяной пар - реальный газ. Он может быть влажным, сухим насыщенным и перегретым. Уравнения состояния реальных тазов сложны, поэтому в теплотехнических расчетах предпочитают использовать таблицы и диаграммы. Особое значение для технических расчетов процессов с водяным паром имеет h,s -диаграмма водяного пара.

В диаграмме h,S нанесена (рис. 5.1) верхняя пограничная кривая (степень сухости пара X=1) соответствующая сухому насыщенному пару. Выше этой кривой располагается область перегретого пара.

Рисунок 5.1 Диаграмма h,S водяного пара

Ниже влажного насыщенного пара. В область влажного насыщенного пара нанесены кривые сухости (X=0,95; Х=0,90; X=0.85 и т.д.)

В координатных, осях h,S (рис.5.1) нанесены кривые простейших процессов р=сonst (изобары); v= сonst (изохоры); t =сonst (и термы); любая вертикальная линия (рис.5.2.) изображает адиабатный процесс (S=const).

В области влажного насыщенного пара изотермы (t =сonst)совпадают с кривыми изобары (р=сonst), так как парообразование происходит при постоянном давлении и при постоянной температуре. На верхней пограничной кривой направление изотермы меняется и в пограничной кривой направление изотермы меняется, и области перегретого пара изотермы отклоняются вправо, и не совпадают с изобарами.

Практически применяется часть диаграммы h,S , когда X 0,5 , которая заключена в рамку. Эта часть диаграммы приведена в прило­жении и на рис.5.2.

Состояние перегретого пара на диаграмме h,S определяется двумя параметрами (р 1 и t 1 или р 1 и v 1), а влажного насыщенного па­ра - одним параметром и степенью сухости пара Х. По 2 заданным па­раметрам р 1 и t 1 в области перегретого пара находим точку I (рис. 5.2.), соответствующую заданному состоянию водяного пара. Для этого состояния из диаграммы можно найти все другие параметры (h 1 ,s 1 ,v 1).

Значение внутренней анергии подсчитывается по формуле

Зная вид термодинамического процесса, двигаются по нему до пе­ресечения с заданным конечным параметром и находят на диаграмме конечное состояние пара..Определив параметры коночного состояния, можно рассчитывать показатели процесса (работу, теплоту, изменение параметров)

Изменение внутренней энергии и работу в любом процессе подсчи­тывают по формулам

Рассмотрим основные задачи, решаемые по h,S диаграмме.

Изохорный процесс (v= const)

Количество теплоты, участвующая в процессе, определяется по формуле 5.2,. для определения изменения внутренней энергии.

Работа изохорного процесса равна нулю.

Изобарный процесс (р=сonst), количество теплоты, участвующая в процессе определяется по формуле

Изменение внутренней энергии по формуле 5.2 или по формуле 5.3

Изотермный процесс (t =сonst).

Теплоту и работу процесса находят по формуле:

5.6

Адиабатный процесс . На рис. 5.2. представлен адиабатный процесс, протекающий без теплообмена с внешней среда. В адиабатном процессе энтропия не изменяется и очень часто этот процесс называется изоэнтропным.

Вода и. водяной пар широко применяются в энергетике, в отоплении, вентиляции, горячем водоснабжении.

Водяной пар - реальный газ. Он может быть влажным, сухим насыщенным и перегретым. Уравнения состояния реальных газов сложны, поэтому в теплотехнических расчетах предпочитают использовать таблицы и диаграммы. Особое значение для технических расчетов процессов с водяным паром имеет h,s -диаграмма водяного пара.

В диаграмме h,S нанесена (рисунок 5.1 а), верхняя пограничная кривая (степень сухости пара X=1) соответствующая сухому насыщенному пару. Выше этой кривой располагается область перегретого пара.

Рисунок 5.1 Диаграмма hS водяного пара

Ниже влажного насыщенного пара. В область влажного насыщенного пара нанесены кривые сухости (X=0,95; Х=0,90; X=0.85 и т.д.)

В координатных, осях hS (рисунок 5.1 а) нанесены кривые простейших процессов р=сonst (изобары); v= сonst (изохоры); t =сonst (изотермы); любая вертикальная линия (рисунок 5.1 б) изображает адиабатный процесс (S=const).

В области влажного насыщенного пара изотермы (t =сonst)совпадают с кривыми изобары (р=сonst), так как парообразование происходит при постоянном давлении и при постоянной температуре. На верхней пограничной кривой направление изотермы меняется и в пограничной кривой направление изотермы меняется, и области перегретого пара изотермы отклоняются вправо и не совпадают с изобарами.

Практически применяется часть диаграммы hS , когда X 0,5, которая заключена в рамку. Эта часть диаграммы приведена на рисунке 5.1.

Состояние перегретого пара на диаграмме hS определяется двумя параметрами (р 1 и t 1 или р 1 и v 1), а влажного насыщенного пара - одним параметром и степенью сухости пара Х. По двум заданным параметрам р 1 и t 1 в области перегретого пара находим точку I (рисунок 5.1 б), соответствующую заданному состоянию водяного пара. Для этого состояния из диаграммы можно найти все другие параметры (h 1 ,s 1 ,v 1).

Значение внутренней энергии подсчитывается по формуле

(5.1)

Зная вид термодинамического процесса, двигаются по нему до пересечения с заданным конечным параметром и находят на диаграмме конечное состояние пара. Определив параметры конечного состояния, можно рассчитывать показатели процесса (работу, теплоту, изменение параметров).

Изменение внутренней энергии
и работу в любом процессе подсчитывают по формулам

∆u = u 1 – u 2 = (h 1 – h 2) - (p 1 v 1 – p 2 v 2); (5.2)

W=q - ∆u = q –(h 1 – h 2)+(p 1 v 1 -p 2 v 2). (5.3)

Рассмотрим основные задачи, решаемые по hS диаграмме.

Изохорный процесс ( v = const ). Количество теплоты, участвующей в процессе определяется по формуле (5.2) для определения изменения внутренней энергии. Работа изохорного процесса равна нулю.

Изобарный процесс (р=с onst ). Количество теплоты, участвующая в процессе определяется по формуле

(5.4)

Изменение внутренней энергии по формуле 5.2

Работу изобарного процесса можно сравнить

w = p (v 2 v 1 ) (5.5)

или по формуле (5.3).

Изотермический процесс ( T onst ). Теплоту и работу процесса находят по формуле

(5.6)

Адиабатный процесс (р v k =const ). На рисунке 5.1б представлен адиабатный процесс, протекающий без теплообмена с внешней средой. В адиабатном процессе энтропия не изменяется и очень часто этот процесс называется изоэнтропным.

Работа процесса происходит за счет изменения внутренней энергии
.

Процесс при постоянной степени сухости (Х=сonst) решается также по диаграмме hS (рисунок 5.2).

Приблизительное количество определяется по формуле

. (5.7)

Изменение внутренней энергии в процессе находят обычным способом по формуле 5.2

Работа процесса определяется по формуле (5.3).