Трансформаторные масла. Большая энциклопедия нефти и газа

Объемный вес масла для трансформаторов не является фиксированной паспортной величиной. Понятно, что данное масло, как и любая другая жидкость, при ее помещении в различные сосуды будет иметь разный объем. Поэтому поговорим о характеристике паспортной, такой как объемный вес трансформаторного масла.

Определение объемного веса

Начнем с определения. Объемный вес масла – это отношение его веса при температуре +20 ºС к весу воды, занимающей тот же объем, но уже при температуре +4 ºС.

Показатели нормы объемного веса масла для трансформаторов

Данный показатель не является нормированным. При температуре +20 ºС для трансформаторного масла он равен 0,856-0,886. Если производить нагревание, то значение объемного веса будет уменьшаться, а при охлаждении – наоборот увеличиваться.

Коэффициент изменения

Чтобы осуществить определение объемного веса масла при температуре, которая отличается от +20 ºС, нужно при ее повышении отнять, а при понижении добавить коэффициент изменения объемного веса на каждый градус. Обычно для электроизоляционных масел численное значение этого показателя составляет 0,0007 на 1 ºС.

ГОСТ

Можно для определения объемного веса также использовать специальную методику, изложенную в ГОСТ-3900-47. Там же приводится таблица, в которой размещены поправки на температуру, не равную +20 ºС.

Приборы для определения объемного веса трансформаторного масла

На практике наиболее простым способом определения объемного веса является использование прибора ареометра (нефтеденсиметра). Порцию испытуемого масла набирают в стеклянный цилиндр, а потом туда помещают и ареометр. Отсчет ведется по верхнему краю мениска.

Влияние температур

Если температуру масла изменить на +100 ºС, например, от -35 ºС до +65 ºС, то его объем изменится приблизительно на 7%. Учитывая тот факт, что при эксплуатации температура может меняться в более широких пределах, объем расширителя нужно подбирать на уровне 9-10% объема масла.

При установившемся режиме и естественном охлаждении трансформатора температура масла в каждой горизонтальной плоскости имеет неизменное значение (рис. 8-1).

Рис. 8-1. Температура масла по высоте бака трансформатора [Л. 8-1].

При этом следует заметить, что только в граничных слоях масла (толщиной около 3 мм), непосредственно омывающих поверхность катушек и бака, происходят колебания температуры. Для того чтобы обеспечить достаточную продолжительность жизни изоляции трансформатора, важно быстрее снижать температуру, т. е. более интенсивно отводить тепло от нагретого провода [Л. 8-1].

Величина коэффициента теплопередачи, помимо других переменных, определяется физическими свойствами теплоносителя: плотностью, теплоемкостью, теплопроводностью и вязкостью [Л. 8-2, 8-3].

Плотность товарных трансформаторных масел обычно варьирует в довольно узких пределах: 0,860-0,900.

С достаточной для многих практических задач точностью температурная зависимость плотности определяется приближенно по уравнению

https://pandia.ru/text/80/153/images/image291.gif" width="26" height="24"> - плотность при температуре 20° С; t - температура, для которой вычисляется плотность; α - температурная поправка плотности на 1°С (табл. 8-1).

Таблица 8-1. Средние температурные поправки плотности нефтяных масел [Л. 8-4].

Теплоемкость и теплопроводность трансформаторных масел зависят от температуры и связаны с плотностью масла.

На рис. 8-2 и 8-3 приведены соответствующие соотношения, заимствованные из [Л. 8-5].

Рис. 8-2. Коэффициент теплопроводности трансформаторных масел различной плотности в зависимости от температуры [Л. 8-5] .

Для определения коэффициента теплопроводности трансформаторных масел в интервале температур от 0 до +120° С можно пользоваться номограммами [Л. 8-6]; в необходимых случаях этот параметр определяют экспериментально [Л. 8-7].

Рис. 8-3. Удельная теплоемкость трансформаторных масел различной плотности в зависимости от температуры [Л..jpg" width="347" height="274">

Рис. 8-4. Практические коэффициенты теплоотдачи теплообменных аппаратов в зависимости от скорости потока и вязкости теплоносителя [Л. 8-9]. 1 - скорость потока 1,2 м/сек; 2 - то же 0,3 м/сек.

Вязкость чистых углеводородов изменяется в широких пределах в зависимости от величины и структуры молекулы. Различают динамическую вязкость η, выраженную обычно в сантипуазах (1 спз 10-3 кГ/мсек ), которая применяется для выражения абсолютных сил, действующих между слоями жидкости, и кинематическую вязкость. Последняя представляет собой отношение динамической вязкости жидкости при данной температуре к ее плотности при той же температуре: νк = η/ρ. Пользование νк весьма удобно при исследовании движения вязких жидкостей.

Увеличение молекулярного веса парафиновых углеводородов приводит к повышению вязкости. Для ароматических углеводородов с повышением длины боковой цепи вязкость увеличивается примерно по параболическому закону (относительно числа атомов углерода в боковых цепях) (рис. 8-5).

Рис. 8-5. Зависимости между вязкостью и длиной боковой цепи для алкилбензолов (пунктирная линия) и β-алкилнафталинов (сплошная линия) [Л. 8-10].

Наличие циклов в молекулах углеводородов приводит к повышению их вязкости. Чем сложнее строение кольца, тем больше вяз-Гость при данном молекулярном весе. Вязкость алкилзамещенных ароматических углеводородов возрастает с увеличением числа боковых цепей. [Л. 8-10. 8-13].

Установлена функциональная зависимость между параметрами, определяющими вязкостные свойства масла, и его углеводородным составом, которая подтверждена экспериментально на примере большого числа образцов масла. Указывается, что, используя такую зависимость, можно на основании данных структурно-группового анализа масла вычислить значения его вязкости при любой температуре, превышающей температуру застывания масла [Л. 8-14].

Исследования, проведенные с различными масляными дистиллятами отечественных нефтей [Л. 8-15], показывают, что наилучшими вязкостно-температурными характеристиками обладают фракции масел, содержащие нафтеновые и парафиновые углеводороды. Удаление парафиновой части из таких фракций приводит обычно к возрастанию уровня вязкости и улучшению низкотемпературных свойств масел.

Для ароматической фракции масла характерно улучшение вязкостно-температурных свойств при увеличении содержания углеводородов с большим количеством атомов углерода в цепях.

Приведенные данные свидетельствуют, что структура углеводородов определяет не только абсолютное значение вязкости их, но также и характер температурной зависимости вязкости. Эта характеристика имеет большое значение при применении масел в трансформаторах, устройствах для переключения под нагрузкой, а также в масляных выключателях.

Весьма важно, чтобы в условиях низких температур вязкость трансформаторного масла была как можно меньше; иными словами, кривая, характеризующая температурную зависимость вязкости масла, должна быть достаточно пологой. В противном случае при высокой вязкости масла в охлажденном трансформаторе будет затруднен отвод тепла от его обмоток в начальный период после включения, что приведет к их перегреву. В переключающих устройствах трансформаторов и масляных выключателях увеличение вязкости масла создает препятствие для перемещения подвижных частей аппаратуры, что влечет за собой нарушение нормальной работы. В связи с этим в некоторых стандартах на трансформаторное масло нормируется вязкость при температуре -30° С. Изменение вязкости трансформаторного масла в зависимости от температуры хорошо описывается уравнением Вальтера [Л. 8-16].

где ν - кинематическая вязкость, сст; Т - температура, °К; р и m - постоянные величины.

На основании этой формулы построена специальная номограмма, с помощью которой, зная вязкость масла при двух определенных температурах, можно приближенно установить вязкость его при любой заданной температуре [Л. 8-17]. В области высоких значений вязкости (т. е. при низких отрицательных температурах) номограммой можно пользоваться лишь до тех пор, пока масло остается ньютоновской жидкостью и не имеет места аномалия вязкости. При температуре ниже минус 20° С иногда наблюдаются отклонения значений вязкости от прямой на номограмме. Для большинства трансформаторных масел предел пользования номограммой соответствует вязкости примерно 1 000-1 500 сст. Другим недостатком номограмм такого рода является то, что двойное логарифмирование приводит к сглаживанию вязкостно-температурной зависимости и наклоны соответствующих прямых для различных масел мало различаются.

В некоторых случаях используют так называемую шкалу Ф [Л. 8-18]. При построении этой шкалы на ось абсцисс наносят температуру в равномерном масштабе. На ось ординат наносят шкалу вязкости таким образом, чтобы для данного трансформаторного масла, принятого за эталон, температурная зависимость вязкости характеризовалась прямой линией. Тогда для других трансформаторных масел зависимость вязкости от температуры также будет изображаться прямой линией. Это позволяет производить интерполяцию и экстраполяцию значений вязкости любого трансформаторного масла по двум опытным точкам (рис. 8-6).

Рис. 8-6. Шкала Ф для интерполяции и экстраполяции вязкости трансформаторных масел при различных температурах по двум опытным точкам; при построении шкалы в качестве эталона попользована опытная зависимость v=f(t) для товарного масла из бакинских нефтей.

Трансформаторные масла и другие жидкие диэлектрики применяют для заливки электрических трансформаторов, масляных выключате­лей, систем циркуляционного охлаждения, других высоковольтных аппаратов, где их используют в качестве изолирующей и теплоотво­дящей среды, для гашения электрической дуги, возникающей между контактами выключателя, а также в качестве охлаждающего агента. Электрические аппараты работают в условиях повышенной темпера-


Показатель Норма по маркам
Масла без присадок Масла с присадками
Т22 Т30 Т46 Т57 Тп-22 Тп-30 Тп-46
Кинематическая вязкость, сСт: при 50° С при 40ºС 20-23 - 28-32 - 44-48 - 55-59 - 20-23 - - 41,4-50,6 - 61,2-74,8
Индекс вязкости, не менее
Кислотное число, мг КОН/г масла, не более 0,02 0,02 0,02 0,05 0,07 0,5 0,5
Число деэмульсации, с, не более
Цвет, ед. ЦНТ, не более 2,0 2,5 3,0 4,5 2,5 3,5 5,5
Температура, °С: вспышки (открытый тигель), не ниже застывания, не выше -15 -10 -10 - -15 -10 -10
Плотность при 20°С, кг/м 3 , не более
Зольность базового масла, %, не более 0,005 0,005 0,010 0,020 - 0,005 0,005
Стабильность против окисления: осадок после окисления, %, не более кислотное число после окисления, мг КОН/г 0,10 - 0,10 - 0,10 - - - 0,005 - 0,01 0,4 0,008 1,5

­туры (70-80 0 С). При электрических разрядах температура еще бо­лее повышается, что ускоряет процессы окисления диэлектриков и приводит к образованию нерастворимого осадка (шлама), а во время гашения электрической дуги - к образованию частиц углерода и воды.

Шлам и частицы углерода, отлагаясь на поверхности внутренних элементов электроаппарата, ухудшают теплообмен, нарушают элек­трическую изоляцию, что может явиться причиной аварии. Появле­ние воды в диэлектрике приводят к понижению его электрической прочности. Присутствие кислот вызывает коррозию металлических частей аппарата и разрушение хлопчатобумажной изоляции.



Таблица 9. Нормы качества трансформаторных масел по

ГОСТ 9972-74* и 3274-72*

Показатель Масла нефтяного происхождения марок Масло синтетическое ОМТИ
Тп-22С/Тп-22Б Тп-30 Тп-46
Вязкость кинематическая при 50 0 С, мм 2 /с 20-23 28-32 44-48 28-29
0,07/0,02 0,03 0,05 0,04
Стабильность: массовая доля осадка после окисления, %, не более 0,005/0,01 0,005 0,005 -
Кислотное число после окисления, мг КОН на 1 г масла, не более 0,1/0,35 0,6 0,7 -
Выход золы, %, не более 0,005/0,01 0,005 0,005 0,15
Число деэмульсации, мин, не более 3/5 3,0 3,0 3,0
Температура вспышки, определяемая в открытом тигле, 0 С, не ниже 186/180
Температура самовоспламенения в воздухе, 0 С, не ниже -
-15 -10 -10 -17

Примечание. Цифры в обозначении марки означают среднюю кинематическую вязкость масла.

В связи с этими важнейшими требованиями к качеству диэлектри­ка являются высокая устойчивость (стабильность) против окисле­ния, отсутствие воды и механических примесей, достаточно низкая температура застывания, высокая электрическая прочность и низкие диэлектрические потери.

Диэлектрические потери в диэлектрике обусловлены токами про­водимости, возникающими в результате процесса поляризации мо­лекул и ионов под действием переменного электрического поля. Но­сителями зарядов могут быть ионы, образующиеся вследствие дис­социации молекул, а также более крупные коллоидные частицы. Ди­электрические потери оцениваются тангенсом угла диэлектрических потерь tgδ. Чем меньше tgδ, тем ниже диэлектрические потери в масле. Значение tgδ для данного диэлектрика зависит от его темпе­ратуры и растет при нагревании масла. Электрическую прочность и tgδ определяют по ГОСТ 6581-75.

Срок службы диэлектрика в трансформаторах 5-10 лет. В связи с этим к его качеству предъявляют весьма высокие требования.

Трансформаторные масла получают из малосернистых и серни­стых нефтей. Из малосернистых нефтей вырабатывают масла двух марок: трансформаторные без присадки и трансформаторные с анти­окислительной присадкой ионол. Масла подвергают сернокислотной очистке с последующей нейтрализацией щелочью и иногда с доочи­сткой отбеливающей землей.

Из сернистых нефтей вырабатывают две марки трансформаторно­го масла: масло селективной фенольной очистки с антиокислитель­ной присадкой ионол и масло с гидрогенизационной очисткой. Мас­ла с повышенным содержанием ароматических углеводородов име­ют большую окислительную и электрическую стойкость, в меньшей степени выделяют газы при воздействии на них электрических раз­рядов. Полное удаление ароматических углеводородов из масла в процессе очистки ухудшает его антиокислительные свойства, однако, излишнее количество ароматических углеводородов, особенно полициклических, повышает tgδ трансформаторных масел. Поэтому для каждого типа масел устанавливают оптимальное соотношение нафтеновых и ароматических углеводородов. Характеристика ос­новных свойств трансформаторных масел приведена в табл. 9

Таблица 10 Основные свойства жидких и пластичных диэлектриков

Показатель Нефтяное масло Кремний-органическая жидкость ПЭСЖ-Д Вазелин конденсаторный нефтяной
трансформаторное для конденсаторов
Плотность при 20 0 С, кг/м 3 880-890 900-920 990-1000 820-840
Кислотное число, мг КОН на 1 г масла, не более 0,01-0,05 0,01-0,015 0,05-0,07 0,03-0,04
Температура застывания, 0 С, не выше -45 -45 -80 37-40
Температура вспышки паров, 0 С, не ниже - -
Зольность, %, не более 0,005 0,0015 - 0,004
Вязкость при 20 0 С, 10 -6 м 2 /c 28-30 35-40 70-80 -
Удельное объемное сопротивление при 20 0 С, Ом · м 10 12 -10 13 10 12 -10 13 10 10 -10 12 10 12 -10 13
Относительная диэлектрическая проницаемость при 20 0 С 2,1-2,4 2,1-2,3 2,6-2,0 3,8-4,0
Тангенс угла диэлектрических потерь при 20 0 С и 50 Гц 0,001-0,003 0,003-0,005 0,0002-0,003 0,0002
Электрическая прочность при 20 0 С и 50 Гц, МВ/м 15-20 20-25 18-20 20-22

Примечание. Трансформаторное масло выпускается четырех марок: ТК, Т -750, T-1500, ПТ.

Все электроизоляционные жидкости (масла) не должны содер­жать водорастворимых кислот, щелочей и механических примесей.

Введение

Любой инженер-энергетик не понаслышке знает, что такое трансформатор, и как он устроен. Что же нужно для надежной работы трансформатора? Одним из критериев является трансформаторное масло. Данная работа поможет больше узнать про трансформаторное масло. Она расскажет не только о самом масле, но и о методах его сушки, а также о технических требованиях при эксплуатации.

Трансформаторное масло

Физические показатели

Плотность трансформаторных масел колеблется в пределах 800-890 кг/м 3 и зависит от его химического состава. Чем больше в масле полициклических ароматических и нафтеновых углеводородов, тем выше его плотность. Молекулярная масса трансформаторных масел колеблется в пределах 230-330 и зависит от их фракционного и химического состава. При близком фракционном составе чем больше в масле ароматических углеводородов, тем меньше молекулярная масса и плотность, то есть по мере углубления очистки масла снижается плотность и увеличивается его молекулярная масса.

Молекулярная масса масел определяется эбуллиоскопическим или криоскопическим методами. Оба метода основаны на законах о разбавленных растворах: первый на измерении повышения температуры кипения чистого растворителя, а второй на измерении понижения температуры кристаллизации чистого растворителя. Поскольку полициклические ароматические и нафтеноароматические углеводороды склонны к ассоциации, молекулярную массу определяют при разной концентрации масла в растворителе и истинную молекулярную массу рассчитывают экстраполяцией к нулевой концентрации.

Показатель преломления характеризует изменение скорости света при переходе из одной среды в другую и измеряется отношением синуса угла падения света к синусу угла его преломления. Показатель преломления зависит от длины волны света и температуры и при заданных значениях этих параметров является характеристикой вещества. Подобно плотности значение показателя преломления снижается при углублении очистки. При близких фракционном составе и вязкости масел показатель преломления удовлетворительно характеризует содержание ароматических углеводородов.

Вязкость характеризует свойство жидкости оказывать сопротивление при перемещении одной части жидкости относительно другой (рисунок 1).

Обычно пользуются понятием кинематической вязкости, представляющей собой отношение динамической вязкости к плотности; за единицу ее принимают в системе СИ 1 м 2 /с.

Вязкость иногда выражают в других единицах - градусах Энглера. За рубежом пользуются градусами Сейболта и Редвуда.

В практике часто важно знать вязкость масла при низких температурах, экспериментальное определение которой сложно. С этой целью определяют вязкость при двух положительных температурах, соединяют значения их прямой на номограмме и экстраполируют до искомой температуры (рисунок 1).

Рисунок 1

Следует учитывать, что номограмма построена исходя из предположения, что в принятом интервале температур масло проявляет себя как ньютоновская жидкость.

При температурах, близких к температуре застывания, проявляется аномалия вязкости. Пользоваться номограммой можно до температур на 10-15 °С выше температуры застывания.

На практике широкое применение нашел индекс вязкости по Дину и Девису. Эти авторы предложили сравнивать вязкость испытуемого масла с вязкостью масляных дистиллятов, полученных из американских нефтей Пенсильванского и Мексиканского заливов. Индекс вязкости первого масла принимается за 100, а второго за 0.

Все масла при 98,9 °С должны иметь одинаковую вязкость.

Плотность, показатель преломления и вязкость масел находятся в зависимости от химического и в первую очередь углеводородного состава масел при близком фракционном составе.

Температура вспышки трансформаторных масел определяется в закрытом тигле в аппарате Мартене--Пенского.

Температурой вспышки называется температура, при которой шары масла, нагреваемого в стандартных условиях, вспыхивают при поднесении к ним пламени.

Температура вспышки для обычных товарных масел колеблется в пределах 130--170, а для арктического масла--от 90 до 115 °С и зависит от фракционного состава, наличия относительно низкокипящих фракций и в меньшей степени от химического состава.

Температуры вспышки масел находятся в зависимости от упругости их насыщенных паров. Чем ниже упругость паров, чем выше температура вспышки, тем лучше можно дегазировать и осушать масло перед заливом в высоковольтное оборудование. Минимальная температура вспышки масел регламентируется не столько по противопожарным соображениям, сколько с точки зрения возможности глубокой их дегазации.

В отношении пожарной безопасности большую роль играет температура самовоспламенения; это температура, при которой масло при наличии воздуха загорается самопроизвольно без поднесения пламени. У трансформаторных масел эта температура около 350--400 °С.

У отечественных трансформаторных масел упругость насыщенных паров при 60 °С колеблется от 8 до 0,4 Па. У зарубежных масел, как правило, упругость паров ниже и составляет от 1,3 до 0,07 Па.

Трансформаторное масло – это продукт, получаемый из нефти. Он используется в качестве электроизоляционного материала, теплоотводящей и дугогасящей среды, а также среды, защищающей твердую изоляцию от попадания воздуха и влаги. Как видим, перечень выполняемых задач достаточно широк, что выдвигает к свойствам трансформаторных масел определенные требования. В этой статье хотелось бы поговорить о том, что такое вязкость трансформаторного масла.

Среди прочих свойств электроизоляционных масел, вязкость является, пожалуй, одной из самых важных. Свежее масло, которое только заливается в трансформатор, должно иметь как можно меньшую вязкость. Это будет способствовать улучшению отведения тепла от обмоток.

Подобная ситуация наблюдается и в масляных выключателях. Их масло должно обладать большой подвижностью и малой вязкостью для того, чтобы сопротивление, оказываемое передвижным частям, было минимальным. Современные выключатели выдвигают новые требования к вязкости масел и зависимости ее повышения от понижения температуры.

Что такое вязкость масла?

Вязкость – одно из важнейших свойств трансформаторных масел, что связано с большим его влиянием на процессы теплообмена, протекающие в маслонаполненном оборудовании.

При выполнении инженерных расчетов используются понятия удельной, кинематической и динамической вязкости. Как и во многих случаях, при выборе масла для электротехнического оборудования приходится идти на компромисс. Все дело в том, что материал с высокой вязкостью хорошо влияет на электроизоляционные свойства, а низкая вязкость снижает охлаждающую способность. Поэтому на практике выбирается оптимальный вариант, который в состоянии обеспечить хорошее выполнение как первой, так и второй функции.

Поскольку условия работы силовых трансформаторов достаточно тяжелые и могут характеризоваться повышенными температурами, стоит учитывать изменение вязкости при нагревании. Повышение температуры приводит к уменьшению вязкости и наоборот.

Обычно в справочной литературе можно найти несколько значений вязкости трансформаторного масла, указанных для определенной температуры. Применяя известные математические методы (интерполяцию, экстраполяцию и т.п.) несложно найти значение вязкости при интересующей температуре, даже если она не указана в справочнике. Например, среднее значение кинематической вязкости для трансформаторного масла составляет (28‑30)∙10 -6 м 2 /с.

Условная и кинематическая вязкость трансформаторного масла

Такой параметр, как условная вязкость , определяют с помощью специального прибора – вискозиметра Энглера, по методике, изложенной в ГОСТ 6558-52. При этом смотрят на так называемое водное число вискозиметра: т.е. истечение 200 см дистиллированной воды при 20 ºС. Оно не должно быть меньше 50 и больше 52.

Кинематическую вязкость определяют с помощью капиллярного вискозиметра (вискозиметра Пинкевича), который имеет вид трубки У-образной формы. Методика измерений изложена в ГОСТ 33-82.

На практике при выборе вязкости масел необходимо искать компромисс, так как с одной стороны высокое ее значение хорошо влияет на электроизоляционные свойства, но ухудшает охлаждающую способность и увеличивает сопротивление движущимся частям механизмов. Малая вязкость оказывает противоположное влияние.

Как правило, разные сорта трансформаторных масел имеют и различную вязкость. Этот показатель существенно зависит от температуры (если масло нагревать, то его вязкость уменьшается), поэтому в справочной литературе в большинстве случаев указывают несколько значений этого показателя при разных температурах.

Например, при положительных рабочих температурах от 50 ºС до 90 ºС вязкость масел различного происхождения может отличаться примерно в два раза. Для различных масел при положительной температуре температурный градиент вязкости не превышает 1 мм 2 /с на 1 ºС.

В случае отрицательных температур вязкость разных сортов масел может возрастать очень неравномерно. Посудите сами: в интервале -20 ºС … -30 ºС температурный градиент вязкости составляет 60-70, -30 ºС … -40 ºС – 90-370, -40 ºС … -50 ºС – 800-6000, а в интервале -50 ºС … -60 ºС может достигать 50000 мм 2 /с на 1 ºС и выше.

Если изменение вязкости трансформаторных масел происходит в области низких температур, то в этом случае нужно учитывать такое явление, как аномалия вязкости. Также скидку на высокие значения вязкости нужно делать в том случае, если вводится в эксплуатацию мощный трансформатор с циркуляционным охлаждением. В таких аппаратах на протяжении длительного времени масло находится под воздействием низких температур.

В устройствах типа масляных выключателей или контакторов для регулирования напряжения под нагрузкой трансформаторов работоспособность также напрямую зависит от вязкости.

Измерение вязкости трансформаторных масел

Определение условной вязкости трансформаторных масел осуществляется при помощи специальных приборов – вискозиметров Энглера. Они состоят из латунного и металлического сосудов, калиброванной трубки, пробки и указательных штифтов.

Вязкость масла в градусах Энглера – это время, необходимое для истечения 200 миллилитров масла, нагретого до температуры 50ºС, деленное на время истечения такого же объема дистиллированной воды, но уже при температуре 20ºС.

Для нахождения динамической и кинематической вязкости используются специальные эмпирические формулы, которые учитывают силу, действующую на твердый шарик в масле, его радиус, скорость движения, радиус и высоту сосуда. Кинематическую вязкость получают путем деления известной динамической вязкости на плотность трансформаторного масла.

Кроме приборов Энглера для измерения условной вязкости могут также использоваться и другие вискозиметры: ротационные, шариковые, электроротационные, капиллярные и пластовискоизиметры.

Для сохранения оптимального численного значения вязкости трансформаторного масла на протяжении всего срока его эксплуатации необходимо использовать специальное оборудование. Все дело в том, что в ходе работы силовых трансформаторов на масла действует ряд неблагоприятных факторов: солнечный свет, высокие температуры, кислород воздуха, механические примеси и т.д. Совокупность этих факторов приводит к ухудшению эксплуатационных параметров масел и их отклонению от нормированных значений. В первую очередь речь идет о пробивном напряжении, кислотном числе, тенгенсе угла диэлектрических потерь, температуре вспышки. Не является исключением и вязкость.

Поэтому для сохранения всех эксплуатационных параметров трансформаторного масла на уровне нормированных значений необходимо выполнение определенных мероприятий: очистки, сушки и регенерации.

Компания GlobeСore предлагает широкий выбор оборудования, предназначенного для работы с трансформаторными маслами. Применение технологий GlobeCore позволяет не только поддерживать параметры трансформаторных масел на должном уровне, но и восстанавливать их в случае ухудшения.

Установки очистки, осушки и регенерации трансформаторных масел от компании GlobeCore – это энергоэффективное и экологичное решение проблемы поддержания и ухудшения качественных характеристик трансформаторных масел! Для обеспечения надежной работы Вашего маслонаполненного оборудования достаточно просто с специалистами нашей компании и с их помощью выбрать установку необходимой производительности.