Водяной пар превращается в жидкость если его. Водяной пар в воздухе

Ты, конечно, замечал, если выйти из речки и не обтираться полотенцем, то через некоторое время твоя кожа станет сухой.

Это говорит о том, что вода с поверхности твоего тела испарилась. Процесс испарения представляет собой переход жидкого состояния воды в парообразное. Ты можешь наблюдать это явление в природе повсеместно.

Испарение постоянно происходит с поверхностного слоя морей и океанов, влажных предметов (например, когда ты протираешь школьную доску мокрой тряпкой).

Для всех живых существ и растений тоже свойственен процесс испарения. Благодаря этому явлению живые организмы способны регулировать температуру своего тела. Ты, наверняка, замечал, что вода с поверхности тела испаряется быстрее, если на улице ветрено или ярко светит солнышко.

Действительно, при повышении температуры и наличии ветра испарение происходит интенсивней, поэтому летом лужи высыхают быстрее, чем осенью. Зимой этот процесс и вовсе замедляется, но не останавливается. Даже мокрое белье, вывешенное на улицу и покрытое коркой льда, все равно станет сухим. Процесс испарения даже при таких условиях все равно продолжается. При температуре +100°С жидкое состояние воды благодаря кипению переходит в парообразное. В этот момент наблюдается самый активный процесс испарения.

Образовавшийся пар с поверхности земли начинает подниматься. Ты ведь знаешь, что теплый воздух гораздо легче холодного, поэтому он и начинает подниматься, устремляясь ввысь. Но с увеличением высоты температура воздуха резко начинает снижаться, и водяной охлаждается, образуя мелкие капельки воды. Так возникают облака, которые ты можешь каждый день наблюдать на небе. В их состав могут входить многочисленные капельки воды. Это водяные облака. В некоторых из них могут присутствовать мелкие кристаллы. Такие облака называют ледяными. А если в составе наблюдаются и капельки воды и кристаллы, то они являются смешанными. Ледяные облака образуются на самых больших высотах.

Процесс образования капель воды из пара является обратным процессу испарения, он получил название - конденсация (от латинского - "сгущение"). В природе этот процесс ты можешь наблюдать при выпадении росы и возникновении туманов.

Явление конденсации активно применяют и в фармакологии. Таким образом очищают воду, которая используется при лабораторных исследованиях и в изготовлении лекарств. Процесс состоит из трех этапов: воду преобразуют в пар, пар вновь переходит в жидкое состояние, а образовавшиеся капли собирают путем стекания (дистилляцией). Получилась дистиллированная вода. Но она не является абсолютно чистой, потому что к ней примешиваются частицы атмосферного воздуха. Почти аналогичный состав наблюдается у очищенной снеговой или дождевой воды.

СОВМЕСТИТЕ ПОЛЕЗНОЕ С ПРИЯТНЫМ!

Откуда берётся вода?

Цель

Познакомить с процессом конденсации.

Материалы

  • ёмкость с горячей водой
  • зеркало.

Я подержала охлажденное зеркало над паром. Я рассмотрела капельки воды, которые появились на нём. Откуда взялась эта вода?

Это пар осел на зеркале и охладился, превратившись в воду. Тоже повторили, но с тёплым зеркалом - капель воды очень мало.

Почему?

Процесс превращения пара в воду происходит при охлаждении пара.

Куда исчезает вода?

Цель

Выявить процесс испарения воды, зависимость скорости испарения от условий (температура воздуха, наличие ветра).

Материалы

  • Три одинаковые ёмкости с одинаковым количеством воды.

Нужно налить одинаковое количество воды в ёмкости, сделать отметку уровня и поместить в разные условия: на батарею, около окна и в прохладное место (тумба).

Теперь наблюдаем за процессом испарения воды, фиксируют в дневнике наблюдений .

Почему?

Вода быстрее испаряется в тепле (у батареи), потом около окна (ветер - сквозняк), в последнюю очередь в тумбе (там прохладно, нет сквозняка).

Водяной пар, превращается в водяные капли?

Понадобится:

  • .Чайник
  • .Горелка
  • .Вода
  • .Металлическая кружка
  • Несколько куликов льда и ледяная вода

Технологический процесс:

  1. Наполните чайник водой.
  2. Дайте воде вскипеть.
  3. Положите несколько кубиков льда и ледяную воду в металлическую кружку.
  4. Когда чайник закипит, сделайте так, чтобы поток пара был направлен на металлическую кружку.

Каков результат?

Водяные капли появляются на внешней поверхности металлической кружки.

Почему?

Водяной пар превращается в капли воды при соприкосновении с холодной поверхностью. Этот процесс, во время которого вода меняет свое газообразное состояние на жидкое, называется "конденсацией". Из-за того что металлическая кружка намного холоднее, чем кипящая вода в чайнике, поток пара, выходящий из него, превращался в капли воды, как только касался поверхности кружки.

Вопрос 1. В каких агрегатных состояниях может находиться вода?

1) Твёрдое – лед, 2) Жидкое – вода, 3) Газообразное – пар.

Вопрос 2. Чем отличаются агрегатные состояния друг от друга?

Агрегатное состояние вещества определяется расположением, характером движения и взаимодействия молекул.

Вопрос 3. Могут ли выпадать осадки не из облаков?

Нет, так как осадки – это вода в жидком или твёрдом состоянии, выпадающая из облаков или осаждающаяся из воздуха на земную поверхность и какие-либо предметы.

Вопрос 4. Почему туман возникает чаще либо рано утром, либо вечером?

Он связан с холодным потоком воздуха, который опускается на теплые поверхности суши или воды.

Вопрос 5. Что такое водяной пар?

Водяной пар - это молекулы воды. То есть водяной пар - это газ.

Вопрос 6. Что такое облако?

Облако - это скопление мелких капель воды или кристалликов льда в атмосфере.

Вопрос 7. Какие существуют виды облаков?

Основными видами облаков являются: слоистые, кучевые, перистые.

Вопрос 8. Перечислите виды атмосферных осадков.

Дождь, ливень, морось, снег, туман, град, роса, иней.

Вопрос 9. Всегда ли осадки выпадают из облаков?

Осадки могут выпадать из воздуха в виде инея, росы при соприкосновении теплого воздуха с холодной поверхностью.

Вопрос 10. Что такое влажность воздуха?

Влажность воздуха - это величина, характеризующая содержание водяных паров в атмосфере Земли.

Вопрос 11. Как образуется водяной пар?

Водяной пар образуется молекулами воды при её испарении.

Вопрос 12. В чём заключается главная закономерность распределения влаги на поверхности Земли?

Поскольку влажность воздуха зависит от температуры воздуха, то воздух над экватором и над океанами всегда более влажный, чем воздух над полюсами и материками.

Вопрос 13. Почему при прочих равных условиях тёплый воздух содержит больше водяного пара, чем холодный?

Потому что при повышении температуры, процесс испарение ускоряется.

Вопрос 14. В чём заключается суть процесса возникновения тумана?

Туман образуется при конденсации. Под утро поверхность Земли сильно охлаждается. Остывает и воздух над ней. При остывании воздух, как и другие вещества, сжимается. Молекулам водяного пара становится тесно, они сближаются всё сильнее и сильнее. Наконец они начинают сталкиваться друг с другом и образуют мельчайшие капельки. Они так малы, что каждую в отдельности мы не можем видеть, но вместе они образуют туман.

Вопрос 15. При каких условиях в природе происходит конденсация водяного пара?

Конденсация - это превращение водяного пара в капельное (жидкое) состояние. Конденсация происходит при охлаждении воздуха.

Вопрос 16. Чем отличается облако от тучи?

Количество воды в тучах превосходит количество воды в облаках, вследствие чего избыток влаги выпадает в виде различных осадков: дождя, снега или града.

Вопрос 17. Составьте схему классификации осадков на основе текста параграфа.

Вопрос 18. Используя данные, приведённые в таблице, рассчитайте годовое количество осадков.

Количество осадков за год: 10+15+ 20+25+15+10+5+5+15+20+25 +20=185 мм.

ВОДЯНОЙ ПАР В АТМОСФЕРЕ

ВЛАЖНОСТЬ ВОЗДУХА. ХАРАКТЕРИСТИКИ СОДЕРЖАНИЯ ВОДЯНОГО ПАРА В АТМОСФЕРЕ

Влажностью воздуха называют содержание водяного пара в атмосфере. Водяной пар является одной из важнейших состав­ных частей земной атмосферы.

Водяной пар непрерывно поступает в атмосферу вследствие испарения воды с поверхности водоемов , почвы, снега, льда и растительного покрова, на что затрачивается в среднем 23 % солнечной радиации, приходящей на земную поверхность.

В атмосфере содержится в среднем 1,29 1013 т влаги (водяно­го пара и жидкой воды), что эквивалентно слою воды 25,5 мм.

Влажность воздуха характеризуется следующими величинами: абсолютной влажностью , парциальным давлением водяного пара, давлением насыщенного пара, относительной влажнос­тью, дефицитом насыщения водяного пара, температурой точки росы и удельной влажностью.

Абсолютная влажность а (г/м3) - количество водяного пара, выраженное в граммах, содержащееся в 1 м3 воздуха.

Парциальное давление (упругость) водяного пара е - фактичес­кое давление водяного пара, находящегося в воздухе, измеряют в миллиметрах ртутного столба (мм рт. ст.), миллибарах (мб) и гектопаскалях (гПа). Упругость водяного пара часто называют абсолютной влажностью. Однако смешивать эти разные понятия нельзя, так как они отражают разные физические величины ат­мосферного воздуха.

Давление насыщенного водяного пара, или упругость насыщения, Е- максимально возможное значение парциального давления при данной температуре; измеряют в тех же единицах, что и е. Упру­гость насыщения возрастает с увеличением температуры. Это зна­чит, что при более высокой температуре воздух способен содер­жать больше водяного пара, чем при более низкой температуре.

Относительная влажность f - это отношение парциального давления водяного пара, содержащегося в воздухе, к давлению насыщенного водяного пара при данной температуре. Выража­ют ее обычно в процентах с точностью до целых:

Относительная влажность выражает степень насыщения воз­духа водяными парами.

Дефицит насыщения водяного пара (недостаток насыщения) d - разность между упругостью насыщения и фактической упругос­тью водяного пара:

= E - e .

Дефицит насыщения выражают в тех же единицах и с той же точностью, что и величины е и Е. При увеличении относитель­ной влажности дефицит насыщения уменьшается и при/= 100 % становится равным нулю.

Так как Е зависит от температуры воздуха, а е - от содержа­ния в нем водяного пара, то дефицит насыщения является комп­лексной величиной, отражающей тепло - и влагосодержание воз­духа. Это позволяет шире, чем другие характеристики влажнос­ти, использовать дефицит насыщения для оценки условий про­израстания сельскохозяйственных растений.

Точка росы td (°С) - температура, при которой водяной пар, со­держащийся в воздухе при данном давлении, достигает состояния насыщения относительно химически чистой плоской поверхности воды. При/= 100 % фактическая температура воздуха совпадает с точкой росы. При температуре ниже точки росы начинается кон­денсация водяных паров с образованием туманов, облаков, а на поверхности земли и предметов образуются роса, иней, изморозь.

Удельная влажность q (г/кг) - количество водяного пара в граммах, содержащееся в 1 кг влажного воздуха:

q = 622 е/Р,

где е - упругость водяного пара, гПа; Р- атмосферное давление, гПа.

Удельную влажность учитывают в зоометеорологических рас­четах, например, при определении испарения с поверхности ор­ганов дыхания у сельскохозяйственных животных и при опреде­лении соответствующих затрат энергии.

ИЗМЕНЕНИЕ ХАРАКТЕРИСТИК ВЛАЖНОСТИ ВОЗДУХА В АТМОСФЕРЕ С ВЫСОТОЙ

Наибольшее количество водяного пара содержится в нижних слоях воздуха, непосредственно прилегающих к испаряющей поверхности. В вышележащие слои водяной пар проникает в ре­зультате турбулентной диффузии

Проникновению водяного пара в вышележащие слои способ­ствует то обстоятельство, что он легче воздуха в 1,6 раза (плот­ность водяного пара по отношению к сухому воздуху при 0 "С равна 0,622), поэтому воздух, обогащенный водяным паром, как менее плотный стремится подняться вверх.

Распределение упругости водяного пара по вертикали зависит от изменения давления и температуры с высотой, от процессов конденсации и облакообразования. Поэтому трудно теоретичес­ки установить точную закономерность изменения упругости во­дяного пара с высотой.

Парциальное давление водяного пара с высотой уменьшается в 4...5 раз быстрее, чем атмосферное давление. Уже на высоте 6 км парциальное давление водяного пара в 9раз меньше, чем на уровне моря. Это объясняется тем, что в приземный слой атмосферы водяной пар поступает непрерывно в результате ис­парения с деятельной поверхности и его диффузии за счет тур­булентности. Кроме того, температура воздуха с высотой пони­жается, а возможное содержание водяного пара ограничивается температурой, так как понижение ее способствует насыщению пара и его конденсации.

Уменьшение упругости пара с высотой может чередоваться с ее ростом. Например, в слое инверсии упругость пара обычно растет с высотой.

Относительная влажность распределяется по вертикали не­равномерно, но с высотой в среднем она уменьшается. В при­земном слое атмосферы в летние дни она несколько возрастает с высотой за счет быстрого понижения температуры воздуха, за­тем начинает убывать вследствие уменьшения поступления во­дяного пара и снова возрастает до 100 % в слое образования об­лаков. В слоях инверсии она резко уменьшается с высотой в ре­зультате повышения температуры. Особенно неравномерно из­меняется относительная влажность до высоты 2...3 км.

СУТОЧНЫЙ И ГОДОВОЙ ХОД ВЛАЖНОСТИ ВОЗДУХА

В приземном слое атмосферы наблюдается хорошо выражен­ный суточный и годовой ход влагосодержания, связанный с со­ответствующими периодическими изменениями температуры.

Суточный ход упругости водяного пара и абсолютной влажности над океанами, морями и в прибрежных районах суши аналогичен суточному ходу температуры воды и воздуха: минимум перед вос­ходом Солнца и максимум в 14...15 ч. Минимум обусловлен очень слабым испарением (или его отсутствием вообще) в это время су­ток. Днем по мере увеличения температуры и соответственно ис­парения влагосодержание в воздухе растет. Таков же суточный ход упругости водяного пара и над материками зимой.

В теплое время года в глубине материков суточный ход влаго-содержания имеет вид двойной волны (рис. 5.1). Первый мини­мум наступает рано утром вместе с минимумом температуры. После восхода Солнца температура деятельной поверхности по­вышается, увеличивается скорость испарения, и количество во­дяного пара в нижнем слое атмосферы быстро растет. Такой рост продолжается до 8...10 ч, пока испарение преобладает над переносом пара снизу в более высокие слои. После 8...10ч воз­растает интенсивность турбулентного перемешивания, в связи с чем водяной пар быстро переносится вверх. Этот отток водяного пара уже не успевает компенсироваться испарением, в результа­те чего влагосодержание и, следовательно, упругость водяного пара в приземном слое уменьшаются и достигают второго мини­мума в 15...16 ч. В предвечерние часы турбулентность ослабева­ет, тогда как довольно интенсивное поступление водяного пара в атмосферу путем испарения еще продолжается. Упругость пара и абсолютная влажность в воздухе начинают увеличиваться и в 20...22ч достигают второго максимума. В ночные часы испаре­ние почти прекращается, в результате чего содержание водяного пара уменьшается.

Годовой ход упругости водяного пара и абсолютной влажности совпадают с годовым ходом температуры воздуха как над океа­ном, так и над сушей. В Северном полушарии максимум влаго-содержания воздуха наблюдается в июле, минимум - в январе. Например, в Санкт-Петербурге средняя месячная упругость пара в июле составляет 14,3 гПа, а в январе - 3,3 гПа.

Суточный ход относительной влажности зависит от упруго­сти пара и упругости насыщения. С повышением температуры испаряющей поверхности увеличивается скорость испарения и, следовательно, увеличивается е. Но Е растет значительно быстрее, чем е, поэтому с повышением температуры поверх­ности, а с ней и температуры воздуха относительная влаж­ность уменьшается [см. формулу (5.1)]. В итоге ход ее вблизи земной поверхности оказывается обратным ходу температуры поверхности и воздуха: максимум относительной влажности наступает перед восходом Солнца, а минимум - в 15ч (рис. 5.2). Дневное ее понижение особенно резко выражено над континентами в летнее время, когда в результате турбу­лентной диффузии пара вверх е у поверхности уменьшается, а вследствие роста температуры воздуха Е увеличивается. По­этому амплитуда суточных колебаний относительной влажно­сти на материках значительно больше, чем над водными по­верхностями.

В годовом ходе относительная влажность воздуха, как правило, также меняется обратно ходу температуры. Например, в Санкт-Петербурге относительная влажность в мае в среднем составляет 65 %, а в декабре - 88 % (рис. 5.3). В районах с муссонным кли­матом минимум относительной влажности приходится на зиму, а максимум - на лето вследствие летнего переноса на сушу масс влажного морского воздуха: например, во Владивостоке летом /= 89%, зимой/= 68 %.

Ход дефицита насыщения водяного пара параллелен ходу температуры воздуха. В течение суток дефицит бывает наи­большим в 14...15 ч, а наименьшим - перед восходом Солнца. В течение года дефицит насыщения водяного пара имеет мак­симум в самый жаркий месяц и минимум в самый холодный. В засушливых степных районах России летом в 13 ч ежегодно отмечается дефицит насыщения, превышающий 40 гПа. В Санкт-Петербурге дефицит насыщения водяного пара в июне в среднем составляет 6,7 гПа, а в январе - только 0,5 гПа

ВЛАЖНОСТЬ ВОЗДУХА В РАСТИТЕЛЬНОМ ПОКРОВЕ

Растительный покров оказывает большое влияние на влаж­ность воздуха. Растения испаряют большое количество воды и тем самым обогащают водяным паром приземный слой атмос­феры, в нем наблюдается повышенное влагосодержание воздуха по сравнению с оголенной поверхностью. Этому способствует еще и уменьшение растительным покровом скорости ветра, а следовательно, и турбулентной диффузии пара. Особенно резко это выражено в дневные часы. Упругость пара внутри крон дере­вьев в ясные летние дни может быть на 2...4 гПа больше, чем на открытом месте, в отдельных случаях даже на 6...8 гПа. Внутри агрофитоценозов возможно повышение упругости пара по срав­нению с паровым полем на 6...11 гПа. В вечерние и ночные часы влияние растительности на влагосодержание меньше.

Большое влияние растительный покров оказывает и на отно­сительную влажность. Так, в ясные летние дни внутри посевов ржи и пшеницы относительная влажность на 15...30 % больше, чем над открытым местом, а в посевах высокостебельных куль­тур (кукуруза, подсолнечник, конопля) - на 20...30 % больше, чем над оголенной почвой. В посевах наибольшая относитель­ная влажность наблюдается у поверхности почвы, затененной растениями, а наименьшая - в верхнем ярусе листьев (табл. 5.1).. Распределение по вертикали относительной влажности и дефицита насыщения

Дефицит насыщения водяного пара соответственно в посевах значительно меньше, чем над оголенной почвой. Его распреде­ление характеризуется понижением от верхнего яруса листьев к нижнему (см. табл. 5.1).

Ранее отмечалось, что растительный покров значительно влияет на радиационный режим (см. гл. 2), температуру почвы и воздуха (см. гл. 3 и 4), существенно изменяя их по сравнению с открытым местом, т. е. в растительном сообществе формируется свой, особый метеорологический режим - фитоклимат. На­сколько сильно он выражен, зависит от вида, габитуса и возрас­та растений, густоты насаждения, способа посева (посадки).

Влияют на фитоклимат и погодные условия - в малооблачную и ясную погоду фитоклиматические особенности проявляются сильнее.

ЗНАЧЕНИЕ ВЛАЖНОСТИ ВОЗДУХА ДЛЯ СЕЛЬСКОХОЗЯЙСТВЕННОГО ПРОИЗВОДСТВА

Водяной пар, содержащийся в атмосфере, имеет, как отмеча­лось в главе 2, большое значение в сохранении тепла на земной поверхности, так как он поглощает излучаемое ею тепло. Влаж­ность воздуха относится к числу элементов погоды, имеющих су­щественное значение и для сельскохозяйственного производства.

Влажность воздуха оказывает большое влияние на растение. Она в значительной степени обусловливает интенсивность транспирации. При высокой температуре и пониженной влаж­ности (/"< 30 %) транспирация резко увеличивается и у растений возникает большой недостаток воды, что отражается на их росте и развитии. Например, отмечается недоразвитие генеративных органов, задерживается цветение.

Низкая влажность в период цветения обусловливает пересы­хание пыльцы и, следовательно, неполное оплодотворение, что у зерновых, например, вызывает череззерницу. В период налива зерна чрезмерная сухость воздуха приводит к тому, что зерно получается щуплым, урожай снижается.

Малое влагосодержание воздуха приводит к мелкоплодности плодовых, ягодных культур, винограда , слабой закладке почек под урожай будущего года и, следовательно, снижению урожая.

Влажность воздуха отражается и на качестве урожая. Отмече­но, что низкая влажность снижает качество льноволокна, но по­вышает хлебопекарные качества пшеницы, технические свой­ства льняного масла, содержание сахара в плодах и т. д.

Особенно неблагоприятно снижение относительной влажно­сти воздуха при недостатке почвенной влаги. Если жаркая и су­хая погода длится продолжительное время, то растения могут за­сохнуть.

Отрицательно сказывается на росте и развитии растений и длительное повышение влагосодержания (/> 80 %). Избыточно высокая влажность воздуха обусловливает крупноклеточное строение ткани растений, что приводит в дальнейшем к полега­нию зерновых культур. В период цветения такая влажность воз­духа препятствует нормальному опылению растений и снижает урожай, так как меньше раскрываются пыльники, уменьшается лёт насекомых.

Повышенная влажность воздуха задерживает наступление полной спелости зерна, увеличивает содержание влаги в зерне и соломе, что, во-первых, неблагоприятно отражается на работе уборочных машин, а во-вторых, требует дополнительных затрат на просушку зерна (табл. 5.2).

Снижение дефицита насыщения до 3 гПа и более приводит практически к прекращению уборочных работ из-за плохих ус­ловий.

В теплое время года повышенная влажность воздуха способ­ствует развитию и распространению ряда грибных заболеваний сельскохозяйственных культур (фитофтороз картофеля и тома­тов, милдью винограда, белая гниль подсолнечника, различные виды ржавчины зерновых культур и др.). Особенно усиливается влияние этого фактора с увеличением температуры (табл. 5.3).

5.3. Число растений яровой пшеницы Цезиум 111, пораженных головней в зависимости от влажности и температуры воздуха (по, От влажности воздуха зависят и сроки проведения ряда сель­скохозяйственных работ: борьбы с сорняками, закладки кормов на силос, проветривания складских помещений, сушки зерна и ДР-

В тепловом балансе сельскохозяйственных животных и чело­века с влажностью воздуха связан теплообмен. При температуре воздуха ниже 10 "С повышенная влажность усиливает теплоотда­чу организмов, а при высокой температуре - замедляет.

Водяной пар — газовая фаза воды

Водяной пар образуется не только, . Этот термин применим и к туману.

Туман — это пар, который становится видимым из-за капелек воды, которые образуются в присутствии охладителя воздуха — пар конденсируется.

При более низких давлениях, например, в верхних слоях атмосферы или в верхней части высоких гор, вода кипит при более низкой температуре, чем номинальная 100 ° C (212 ° F). При нагревании в дальнейшем становится перегретым паром.

Как газ, водяной пар может содержать только определенное количество водяного пара (количество зависит от температуры и давления).

Пар-жидкость равновесие является состоянием, при котором жидкость и пар (газовая фаза) находятся в равновесии друг с другом, это такое состояние, когда скорость испарения (жидкие изменения в пар) равна скорости конденсации (превращения пара в жидкость) на молекулярном уровне, что в целом означает взаимопревращения «пар-вода» . Хотя в теории равновесия можно достичь в относительно замкнутом пространстве, соотносятся в контакте друг с другом достаточно долго без каких-либо помех или вмешательств извне. Когда газ поглотил свое максимальное количество, он, как говорят, находится в жидком паровом равновесии, но если в нем больше воды, он описывается как ‘влажный пар’.

Вода, водяной пар и их свойства на Земле

  • полярных шапок льда на Марсе
  • Титан
  • Европа
  • Кольца Сатурна
  • Энцелад
  • Плутон и Харон
  • Кометы и кометы источником населения (пояса Койпера и облаком Оорта объектов).

Вода-лед может присутствовать на Церере и Тетис. Вода и другие летучие вещества, вероятно, составляют большую часть внутренних структур Урана и Нептуна и воды в глубокие слои могут быть в виде ионной воды, в которой молекулы распадаются на суп из водорода и ионы кислорода, и глубже, как суперионные воды, в которой кислород кристаллизуется, но ионы водорода плавают свободно в пределах кислорода решетки.

Некоторые из полезных ископаемых Луны содержат молекулы воды. Например, в 2008 году лаборатории устройство, которое собирает и определяет частицы, обнаружены небольшие количества соединений, внутри вулканического жемчуга, привезенного с Луны на Землю Аполлон-15 экипаж в 1971 году. НАСА сообщили об обнаружении молекул воды НАСА Луна минералогии Mapper на борту Чандраян-1 корабля Индийской организации космических исследований в сентябре 2009 года.

Области применения пара

Пар используется в широком спектре отраслей промышленности. Общие приложения для пара, например, связаны с паровым обогревом процессов на фабриках и заводах и на паровых приводных турбинах на электростанциях…

Вот некоторые типичные приложения для пара в промышленности: Отопление / Стерилизация, Движение / привод, Распыление, Очистка, Увлажнение…

Связь воды и пара, давления и температуры

Насыщение (сухого) пара результат процесса, когда вода нагревается до температуры кипения, а затем испаряется с дополнительным выделением тепла (скрытое отопление).

Если эта пара затем дополнительно нагревается выше точки насыщения, пар становится перегретым паром (фактическое отопление).

Насыщенный пар

Насыщенный пар образуется при температурах и давлениях, где пар (газ) и вода (жидкость) могут сосуществовать. Другими словами, это происходит, когда скорость испарения воды равна скорости конденсации.

Преимущества использования насыщенного пара для отопления

Насыщенный пар обладает многими свойствами, которые делают его отличным источником тепла, особенно при температуре 100 ° C (212 ° F) и выше.

Влажный пар

Это наиболее распространенная форма пара, которую на самом деле испытывает на себе большинство растений. Когда пар произведен, используя котел, он обычно содержит влажность от невыпаренных молекул воды, которые перенесены в распределенный пар. Даже самые лучшие котлы могут распустить пар, содержащий от 3% до 5% влажности. Когда вода подходит к состоянию насыщения и начинает испаряться, немного воды, как правило, оседает в виде тумана или капель. Это одна из ключевых причин, почему образуется конденсат из распределенных пар.

Перегретый пар

Перегретый пар создается при дальнейшем нагревании влажного или насыщенного пар вне точки насыщенного пара. Это дает пар, который имеет более высокую температуру и низкую плотность, чем у насыщенного пара при том же давлении. Перегретый пар используется в основном в двигателе / ??приводе турбины, и обычно не используется для теплопередачи.

Сверхкритическая вода

Сверхкритическая вода есть вода в состоянии, которое превышает его критическую точку: 22.1MPa, 374 ° C (3208 PSIA, 705 ° F). В критической точке, скрытая теплота пара равна нулю, а его удельный объем точно такой же, будь то жидкое или газообразное состояние. Иными словами, вода, которая находится при более высоком давлении и температуре, чем критическая точка, находится в неразличимом состоянии, которое не является ни жидкостью, ни газом.

Сверхкритических вода используется для привода турбин на электростанциях, которые требуют более высокой эффективности. Исследование сверхкритической воды выполняется с акцентом на его использование в качестве жидкости, которая имеет свойства как жидкости, так и газа, и в частности о его пригодности в качестве растворителя для химических реакций.

Различные состояния Воды

Ненасыщенные воды

Это вода в ее наиболее узнаваемом состоянии. Около 70% веса человеческого тела из воды. В жидком виде вода имеет устойчивые водородные связи в молекуле воды. Ненасыщенные воды относительно компактные, плотные, и стабильные структуры.

Насыщенный пар

Насыщенные молекулы пара невидимы. Когда насыщенный пар поступает в атмосферу, будучи вентилируемый из трубопроводов, часть его конденсируется, передавая свое тепло окружающему воздуху, и образуются клубы белого пара (крошечные капельки воды). Когда пар включает в себя эти крошечные капельки, это называется влажным паром.

В паровой системе, паровые потоки, идущие от конденсатоотводчиков часто неправильно называют насыщенными парами, в то время как это на самом деле пар вторичного вскипания. Разница между ними состоит в том, что насыщенный пар невидим сразу на выходе из трубы, в то время как облако пара содержит видимые капли воды, которые мгновенно в нем образуются.

Перегретый пар

Перегретый пар не будет конденсироваться, даже если он вступает в контакт с атмосферой и на него воздействуют перепады температуры. В результате, облака пара не образуются.

Перегретый пар сохраняет больше тепла, чем насыщенный пар при том же давлении, и движение его молекул происходит быстрее, поэтому он имеет более низкую плотность (т. е. его удельный объем больше).

Сверхкритическая вода

Хотя не возможно сказать визуальным наблюдением, это — вода в форме, которая не является ни жидкой, ни газообразной. Общее представление имеет молекулярное движение, которое является близко к тому из газа, и плотности, которая ближе к той из жидкости.

Хотя нельзя сказать, путем визуального наблюдения, это вода в какой форме, она не является ни жидкой, ни газообразной. Общее представление имеет молекулярное движение, близкое к газу, а плотность такой воды ближе к жидкости.

Промежуточное состояние вещества между состоянием реального газа и жидкостью принято называть парообразным или просто паром. Превращение жидкости в пар представляет собой фазовый переход из одного агрегатного состояния в другое. При фазовом переходе наблюдается скачкообразное изменение физических свойств вещества.

Примерами таких фазовых переходов является процесс кипения жидкости с появлением влажного насыщенного пара и последующим переходом его в лишенный влаги сухой насыщенный пар или обратный кипению процесс конденсации насыщенного пара.

Одно из основных свойств сухого насыщенного пара заключается в том, что дальнейший подвод теплоты к нему приводит к возрастанию температуры пара, т. е. перехода его в состояние перегретого пара, а отвод теплоты — к переходу в состояние влажного насыщенного пара. В

Фазовые состояния воды

Рисунок 1. Фазовая диаграмма для водяного пара в T, s координатах.

Область I – газообразное состояние (перегретый пар, обладающий свойствами реального газа);

Область II – равновесное состояние воды и насыщенного водяного пара (двухфазное состояние). Область II также называют областью парообразования;

Область III – жидкое состояние (вода). Область III ограничена изотермой ЕК;

Область IV – равновесное состояние твердой и жидкой фаз;

Область V – твердое состояние;

Области III, II и I разделены пограничными линиями AK (левая линия) и KD (правая линия). Общая точка K для пограничных линий AK и KD обладает особыми свойствами и называется критической точкой . Эта точка имеет параметры p кр , v кр и Т кр , при которых кипящая вода переходит в перегретый пар, минуя двухфазную область. Следовательно, вода не может существовать при температурах выше Т кр.

Критическая точка К имеет параметры:

p кр = 22,136 МПа; v кр = 0,00326 м 3 /кг; t кр = 374,15 °С.


Значения p, t, v и s для обеих пограничных линий приводятся в специальных таблицах термодинамических свойств водяного пара.

Процесс получения водяного пара из воды

На рисунках 2 и 3 изображены процессы нагрева воды до кипения, парообразования и перегрева пара в p, v — и T, s -диаграммах.

Начальное состояние жидкой воды, находящейся под давлением p 0 и имеющей температуру 0 °С, изображается на диаграммах p, v и T, s точкой а . При подводе теплоты при p = const температура ее увеличивается и растет удельный объем. В некоторый момент температура воды достигает температуры кипения. При этом ее состояние обозначается точкой b. При дальнейшем подводе теплоты начинается парообразование с сильным увеличением объема. При этом образуется двухфазная среда — смесь воды и пара, называемая влажным насыщенным паром . Температура смеси не меняется, так как тепло расходуется на испарение жидкой фазы. Процесс парообразования на этой стадии является изобарно-изотермическим и обозначается на диаграмме как участок bc . Затем в некоторый момент времени вся вода превращается в пар, называемый сухим насыщенным . Это состояние обозначается на диаграмме точкой c .

Рисунок 2. Диаграмма p, v для воды и водяного пара.

Рисунок 3. Диаграмма T, s для воды и водяного пара.

При дальнейшем подводе теплоты температура пара будет увеличиваться и будет протекать процесс перегрева пара c — d . Точкой d обозначается состояние перегретого пара. Расстояние точки d от точки с зависит от температуры перегретого пара.

Индексация для обозначения величин, относящихся к различным состояниям воды и пара:

  • величина с индексом «0» относится к начальному состоянию воды;
  • величина с индексом «′» относится к воде, нагретой до температуры кипения (насыщения);
  • величина с индексом «″» относится к сухому насыщенному пару;
  • величина с индексом «x » относится к влажному насыщенному пару;
  • величина без индекса относится к перегретому пару.

Процесс парообразования при более высоком давлении p 1 > p 0 можно отметить, что точка a, изображающая начальное состояние воды при температуре 0 °С и новом давлении, остается практически на той же вертикали, так как удельный объем воды почти не зависит от давления.

Точка b′ (состояние воды при температуре насыщения) смещается вправо на p, v -диаграмме и поднимается вверх на T,s -диаграмме. Это потому, что с увеличением давления увеличивается температура насыщения и, следовательно, удельный объем воды.

Точка c′ (состояние сухого насыщенного пара) смещается влево, т. к. с увеличением давления удельный объем пара уменьшается, несмотря на увеличение температуры.

Соединение множества точек b и c при различных давлениях дает нижнюю и верхнюю пограничные кривые ak и kc. Из p, v -диаграммы видно, что по мере увеличения давления разность удельных объемов v″ и v′ уменьшается и при некотором давлении становится равной нулю. В этой точке, называемой критической, сходятся пограничные кривые ak и kc. Состояние, соответствующее точке k , называется критическим. Оно характеризуется тем, что при нем пар и вода имеют одинаковые удельные объемы и не отличаются по свойствам друг от друга. Область, лежащая в криволинейном треугольнике bkc p, v -диаграмме), соответствует влажному насыщенному пару.

Состояние перегретого пара изображается точками, лежащими над верхней пограничной кривой kc .

На T, s -диаграмме площадь 0abs′ соответствует количеству теплоты, необходимого для нагрева жидкой воды до температуры насыщения.

Количество подведенной теплоты, Дж/кг, равное теплоте парообразования r, выражается площадью s′bcs, и для нее имеет место соотношение:

r = T (s″ — s′ ).

Количество подведенной теплоты в процессе перегрева водяного пара изображается площадью s″cds .

На T, s -диаграмме видно, что по мере увеличения давления теплота парообразования уменьшается и в критической точке становиться равной нулю.

Обычно T, s -диаграмма применяется при теоретических исследованиях, так как практическое использование ее сильно затрудняется тем, что количества теплоты выражаются площадями криволинейных фигур.

По материалам моего конспекта лекций по термодинамике и учебника «Основы энергетики». Автор Г. Ф. Быстрицкий. 2-е изд., испр. и доп. — М. :КНОРУС, 2011. — 352 с.