Схемы и показатели газотурбинных установок электростанций. Газотурбинные установки (гту)

Современная газотурбинная установка (ГТУ) – это совокупность воздушного компрессора, камеры сгорания и газовой турбины, а также вспомогательных систем, обеспечивающих ее работу. Совокупность ГТУ и электрического генератора называют газотурбинным агрегатом. Турбина, в которой газ расширяется до атмосферного давления, преобразует потенциальную энергию сжатого и нагретого до высокой температуры газа в кинетическую энергию вращения ротора турбины. Турбина приводит электрогенератор, преобразующий кинетическую энергию вращения ротора генератора в электрический ток. Электрогенератор состоит из статора, в электрических обмотках которого генерируется ток, и ротора, представляющего собой электромагнит, питание которого осуществляется от возбудителя.

В отличие от паротурбинных установок (ПТУ), где рабочим телом является пар, ГТУ работают на продуктах сгорания топлива. Кроме того, в отличие от ГТУ в состав ПТУ не входит котел, точнее котел рассматривается как отдельный источник тепла. Паротурбинная установка без котла как физического объекта работать не может. В ГТУ же наоборот камера сгорания является ее неотъемлемой частью. В этом смысле ГТУ самодостаточна. По способу подвода теплоты при постоянном давлении p = const и при постоянном объеме v = const . Все современные ГТУ работают с подводом теплоты при p = const . Существуют открытые (разомкнутые) и закрытые (замкнутые) схемы ГТУ

Простейшая схема открытой ГТУ в условных обозначениях, а также ее термодинамический цикл представлены на рисунке 1. Воздух из атмосферы поступает на вход воздушного компрессора (точка 1 ), который представляет собой роторную турбомашину с проточной частью, состоящей из вращающихся и неподвижных решеток. Отношение давления за компрессором к давлению перед нимназывается степенью сжатия воздушного компрессора и обычно обозначается как. Ротор компрессора приводится газовой турбиной. Поток сжатого воздуха подается в одну, две или более камер сгорания (точка2 ). При этом в большинстве случаев поток воздуха, идущий из компрессора, разделяется на два потока. Первый поток направляется к горелочным устройствам, куда также подводится топливо (газ или жидкое топливо), за счет сжигания которого при постоянном давлении p = const образуются продукты сгорания высокой температуры. К ним подмешивается относительно холодный воздух второго потока с тем, чтобы получить газы (их называют рабочими газами) с допустимой для деталей газовой турбины температурой.

Рисунок 1 – Простейшая схема открытой ГТУ и ее термодинамический цикл

Рабочие газы с давлением из–за гидравлического сопротивления камеры сгорания) подаются в проточную часть газовой турбины (точка3 ), где расширяются практически до атмосферного давления (точка4 ). Далее они поступают в выходной диффузор, откуда – или сразу в дымовую трубу, что вызовет значительные потери теплоты, или предварительно в какой–либо теплообменник, использующий теплоту уходящих газов ГТУ.

В замкнутой схеме (рис.2) вместо камеры сгорания применяют поверхностные подогреватели рабочего тела, а отработавший в турбине газ (например, гелий) охлаждается в специальных охладителях до наиболее низкой температуры, после чего поступает в компрессор. Термодинамический цикл данной схемы аналогичен циклу открытой ГТУ.

Вследствие расширения газов в газовой турбине, последняя вырабатывает мощность. Значительная ее часть тратится на привод компрессора, а оставшаяся часть – на привод электрогенератора. Эту часть называют полезной мощностью ГТУ и указывают при ее маркировке.

В реальных ГТУ все протекающие процессы сопровождаются потерями работы в компрессоре и турбине, а также потерями давления по тракту ГТУ. С учетом этих потерь реальный цикл отличается от идеального. В состав реальной ГТУ входят камера сгорания (подогреватель рабочего тела в закрытой схеме), газовая турбина, компрессор, пусковой двигатель, теплообменники различного назначения (регенеративные подогреватели, промежуточные подогреватели в турбинах) и различное вспомогательное оборудование, а также электрогенератор, если назначением ГТУ является производство электрической энергии. Турбина, компрессор и генератор размещаются на одном валу. Пусковой двигатель присоединяется расцепной муфтой. В простейших ГТУ приблизительно 70 % мощности, развиваемой турбиной, расходуется на привод компрессора, а 30 % на привод генератора. Степень повышения давления в компрессоре =6…7, КПД установки 24…27 %, температура перед турбиной 750…800 °С. Диапазон начальных температур перед газовой турбиной в ГТУ составляет 750…1150 °С, поэтому исходя из условий прочности, элементы установки, работающие при высоких температурах, выполняют из высоколегированных сталей, а для повышенной надежности предусматривают их воздушное охлаждение.

Рисунок 2 – Простейшая схема замкнутой ГТУ

Отработавшие газы турбины имеют высокую температуру, поэтому их удаление в окружающую среду в открытой схеме ГТУ приводит к значительным потерям энергии. В целях повышения КПД установки применяют регенеративный подогрев сжатого воздуха уходящими газами турбины. Это увеличивает степень использования теплоты сожженного в камере сгорания топлива и энергетическую эффективность установки.

В идеальной ГТУ с регенерацией, схема и цикл которой показаны на рисунке 3, выхлопные газы турбины можно охладить до температуры, равной температуре воздуха за компрессором, т.е. до , а сжатый компрессором воздух можно нагреть до температуры, соответствующей температуре на выхлопе турбины, т.е. до. В реальной установке воздух в регенеративном теплообменнике нагреется до температуры, которая ниже, а выхлопные газы охладятся в этом же теплообменнике до температуры, которая вышена величину, обычно равную в открытых схемах 60…80 °С. Реальные ГТУ, работающие по разомкнутой схеме при начальной температуре 750…850 °С, имеют степень регенерации, а эффективный КПД 26,5…30 %.

Рисунок 3 – Схема и цикл ГТУ с регенерацией

ГТУ, обеспечивающие комбинированную выработку электрической и тепловой энергии, называются теплофикационными. Выработка тепловой энергии осуществляется за счет использования теплоты газов, уходящих из турбины с высокой температурой, для нагрева воды и получения пара. Нагрев воды, идущей на отопление и бытовые нужды, отработавшими газами турбины является наиболее простым способом повышения тепловой экономичности ГТУ.

В ГТУ применяется газообразное и легкое жидкое топливо. При использовании жидкого топлива тяжелых сортов, содержащего вредные примеси, нужна специальная система топливоподготовки для предотвращения коррозии деталей турбины под воздействием содержащихся в тяжелом топливе соединений серы и ванадия. Проблема использования твердого топлива в ГТУ находится в стадии интенсивной опытно-промышленной разработки.

Технология пуска турбины в большой степени зависит от температурного состояния оборудования перед ним. Различают пуски из холодного, неостывшего и горячего состояний. Если температура турбины не превышает 150 °С, то считают, что пуск произведен из холодного состояния. Для мощных энергоблоков для остывания до такой температуры требуется до 90 часов. Пускам из горячего состояния соответствует температура турбины 420-450 °С и выше (достигается за 6-10 часов). Неостывшее состояние является промежуточным. Всякое удлинение пуска приводит к дополнительным затратам топлива. Поэтому пуск должен производиться быстро, однако не в ущерб надежности. Пуск турбины запрещается:

при неисправности основных приборов, показывающих протекание теплового процесса в турбине и ее механическое состояние (тахометры, термометры, манометры и т.п.);

при неисправной системе смазки, обеспечивающей смазку подшипников;

при неисправности систем защиты и регулирования;

при неисправном валоповоротном устройстве.

Для запуска в работу ГТУ необходимо пусковым устройством (ПУ) привести во вращение ротор турбокомпрессора, воздух от компрессора одновременно с топливом подать в камеру сгорания для ее зажигания и для выполнения дальнейших операций по пуску ГТУ. В качестве пускового устройства могут быть использованы различные средства: электродвигатель, паровая или газовая (воздушная) турбина, двигатель внутреннего сгорания. Для крупных энергетических турбин, как правило, в качестве ПУ используется собственный электрический генератор ГТУ, разворачивающий ротор ГТУ до частоты вращения равной 0,2 – 0,3 номинальной. В период пуска регулирующие направляющие аппараты компрессора должны быть прикрыты для снижения расхода воздуха. В начале пуска открыты антипомпажные клапаны. Топливо подается в камеру сгорания, и образующаяся в смесительном устройстве камеры сгорания топливовоздушная смесь зажигается при помощи запального устройства (плазменного зажигателя). Расход топлива увеличивается путем открытия топливного клапана. Это вызывает рост температуры газов перед турбиной, мощность турбины и частота вращения ротора. При определенной температуре газа перед турбиной и некоторой частоте вращения устанавливается равенство мощности газовой турбины и мощности, потребляемой воздушным компрессором. В этом состоянии после небольшого дополнительного увеличения расхода топлива пусковое устройство отключается, и ГТУ переходит в режим самоходности. При дальнейшем увеличении расхода топлива турбоагрегат разворачивается газовой турбиной до достижения номинальной частоты вращения, затем производится синхронизация электрического генератора с сетью и включение его в сеть. Таким образом агрегат выводится в режим холостого хода. В процессе пуска антипомпажные клапаны закрываются, а регулируемые направляющие аппараты устанавливаются в положения, предписываемые программой запуска.

В процессе нагружения ГТУ до номинальной мощности увеличивается расход топлива открытием регулирующего клапана, изменяются углы установки регулируемых направляющих аппаратов компрессора по соответствующей программе, расход воздуха увеличивается до номинального значения. Эксплуатация ГТУ в общем случае состоит из пуска, работы с электрической и тепловой нагрузкой и остановки. Наиболее простой является работа при постоянной нагрузке. Основной задачей персонала, обслуживающего турбоустановку, при нормальной работе является обеспечение заданной электрической и тепловой мощности при полной гарантии надежной работы и максимально возможной экономии.

Режимы работы ГТУ можно поделить на стационарные и переменные.

Стационарный режим отвечает работе турбины при некоторой фиксированной нагрузке. Он может протекать как при номинальной, так и при частичной нагрузке. До недавнего времени этот режим был основным для ГТУ. Турбина останавливалась несколько раз в год из-за неполадок или плановых ремонтов.

Переменные режимы ГТУ определяются следующими по отношению к ГТУ причинами. Первая причина – необходимость изменить мощность, вырабатываемую ГТУ, если изменилась мощность, потребляемая, например, электрическим генератором, из-за изменения подключенной к генератору электрической нагрузки потребителей. Если ГТУ приводит электрический генератор, включенный параллельно с другими производителями мощности, т.е. работающий на общую сеть (энергосистему), то необходимо изменить мощность данной ГТУ в случае изменения общей потребляемой мощности в системе. Вторая причина – изменение атмосферных условий: давления и особенно температуры атмосферного воздуха, забираемого компрессором. Наиболее сложным нестационарным режимом является пуск ГТУ, включающий многочисленные операции перед толчком ротора. К нестационарным режимам относят резкие изменения нагрузки (сброс или наброс), а также остановку турбины (разгружение, отключение от сети, выбег ротора на остывание).

Таким образом, для ГТУ основной задачей управления является обеспечение необходимой мощности, а для энергетических ГТУ – постоянство частоты вращения приводимого электрического генератора. Переменные режимы работы ГТУ следует осуществлять таким образом, чтобы экономичность при каждом режиме была максимально высокой. Регулирование режима ГТУ производится воздействием на регулирующие топливные клапаны, подающие топливо непосредственно в камеру сгорания, что обусловливает низкую инерционность процесса подвода теплоты к рабочему телу в камере сгорания. ГТУ чувствительны к изменению атмосферных условий. Для них имеется опасность возникновения помпажа компрессора. Для пуска ГТУ необходимо, чтобы на всех возможных режимах работы помпаж был исключен. Для пуска ГТУ необходима предварительная раскрутка ротора при помощи пускового устройства.

В современных крупных ГТУ используются автоматизированные системы управления, выполняющие следующие функции:

– автоматическое дистанционное управление пуском, нагружением и остановкой ГТУ;

– регулирование таких параметров, как частота вращения турбоагрегата с заданной степенью неравномерности, температуры газа перед турбиной и за ней, активная нагрузка электрического генератора, режим работы компрессора на необходимом удалении от границы помпажа;

– защита ГТУ, а именно отключение и остановку при аварийных ситуациях, из которых наиболее серьезными являются такие, как недопустимое повышение температур газа перед газовой турбиной и за ней, недопустимое повышение температур газа перед газовой турбиной и за ней, недопустимое повышение температур газа перед газовой турбиной и за ней, недопустимое повышение частоты ротора, недопустимое падение давления масла для смазки подшипников, недопустимый осевой сдвиг ротора, погасание факела в камере сгорания, приближение к границе помпажа компрессора, недопустимое повышение виброскорости шеек ротора и корпусов подшипников.

Событие, заключающееся в нарушении работоспособности ГТУ, называется отказом. Для поддержания высокой надежности и безотказности оборудование проходит техническое обслуживание, текущий, средний или капитальный ремонты. При текущем и среднем ремонтах заменяются или восстанавливаются поврежденные детали и узлы, а при капитальном проводится полное восстановление работоспособности. При нормальной эксплуатации ГТУ необходимы тщательный уход и регулярные проверки систем защиты и регулирования, осуществляемые вахтенным персоналом и инженером, отвечающим за работу этой системы. Надежность ее эксплуатации зависит от тщательности осмотра доступных узлов систем регулирования и защиты, сравнения текущих показателей приборов с предшествующими, выполнения всех проверок и операций, предусмотренных инструкциями, составленными с учетом требований заводов-изготовителей турбин правил техники эксплуатации (ПТЭ) и методических указаний по проверке и испытаниям. Особое внимание при осмотре должно уделяться потенциальным источникам утечек масла. Необходимо следить за положением гаек, стопорных деталей и другого крепежа на штоках, золотниках, поскольку эти детали работают в условиях вибраций, вызывающих их отвинчивание и нарушение работы. Необходимо следить за механическим состоянием всех доступных узлов: кулачковых механизмов, их валов, подшипников, пружин и т.д. Особое внимание следует обращать на колебания регулирующих органов, которые могут вызвать обрыв приводных штоков вследствие усталости. Необходимо следить за изменениями давлений и пульсациями в основных маслопроводах систем регулирования и защиты: линии подачи масла на смазку, в импульсных линиях, линиях защиты и полостях сервомоторов. Изменение этих давлений свидетельствует о ненормальностях системах регулирования, маслоснабжения: о неплотности клапанов, уплотнений поршней и штоков сервомоторов, засорении регулировочных шайб. Пульсации золотников вызываются ненормальной работой импеллера, загрязнением маслопроводов, попаданием твердых частиц между золотниками и буксами, повышенным содержанием воздуха в масле и другими причинами.

Первейшее внимание обслуживающего персонала должно быть уделено исключению возможности разгона турбины при отключениях электрического генератора от сети, что обеспечивается достаточной плотностью стопорных и регулирующих клапанов и обратных клапанов на трубопроводах. Проверка производится при остановке турбины не реже одного раза в год, а также в обязательном порядке при пуске после монтажа. Для нормальной работы турбины должен правильно функционировать масляный бак, обеспечивая длительную сохранность масла, отделение от него воздуха, шлама и твердых частиц. Уровень масла в баке должен проверяться 1 раз в смену. Одновременно необходимо следить за исправностью сигнализации о минимально допустимом уровне и разностью уровней в грязном и чистом отсеках масляного бака. Должны подвергаться регулярной проверке резервные и аварийные масляные насосы и устройства их автоматического включения с частотой 2 раза в месяц. Качество работы маслоохладителей проверяется по разности давлений на входе и выходе масла и охлаждающей воды и по нагреву охлаждающей воды и охлаждению масла. Химическая лаборатория электростанции должна регулярно проводить анализ эксплуатируемого масла, чтобы вовремя проводить его регенерацию и замену.

При наблюдении за работающей турбиной необходимо обращать внимание прежде всего на относительное удлинение ротора и его осевой сдвиг. При монтаже и ремонтах турбины ротор в корпусе устанавливают так, чтобы в рабочих условиях, когда эти детали прогреются, между ними были достаточно малые, но исключающие задевания зазоры, иначе может возникнуть тяжелая авария.

Разгружение турбины ведут путем постепенного закрытия регулирующих клапанов (с помощью механизма управления). Особенно внимательно нужно следить за относительным сокращением ротора, и если, не смотря на все принимаемые меры, сокращение приближается к опасному пределу, необходимо прекратить разгружение, а возможно, даже увеличить нагрузку. Снижение нагрузки обычно ведут до 15-20 % номинальной, после чего прекращают подачу газа в турбину. С этого момента она вращается генератором с частотой электрической сети. В короткое время, указанное в инструкции (обычно несколько минут), необходимо убедиться, что стопорные, регулирующие клапаны на линиях отборов закрылись, а ваттметр показывает отрицательную мощность (потребление мощности из сети).После этого можно отключить генератор из сети. После остановки ротора турбины необходимо во избежание его теплового прогиба немедленно включить валоповоротное устройство. Не допускается отключение подачи масла. В течение первых 8 часов ротор вращается непрерывно, а в дальнейшем его периодически поворачивают на 180°. Аварийная остановка турбоагрегата производится путем немедленного прекращения подачи рабочего тела.

За остановленной турбиной необходим тщательный уход. Наибольшую опасность при простое для турбины и некоторых других элементов турбоустановки представляет стояночная коррозия, основной причиной которой является одновременное присутствие влаги и воздуха. Чтобы этого не происходило, необходимо открыть вентили, обеспечивающие сообщение деталей с атмосферой. При остановке турбины в длительный резерв принимаются дополнительные меры. Она отключается от всех трубопроводов заглушками. Вал турбины дополнительно уплотняется шнуром, через подшипники не реже раза в неделю прокачивается масло для создания защитного слоя масла на шейках подшипников, а ротор поворачивается валоповоротным устройством на несколько оборотов. Наиболее эффективным способом борьбы со стояночной коррозией является консервация турбины.

Сборка ГТУ производится на турбинном заводе после изготовления в его цехах отдельных деталей и узлов. В отличие от паровой турбины, после сборки на заводе ГТУ испытаний не проходит. В результате с турбинного завода на монтажную площадку ТЭС уходит несколько отдельно транспортируемых единиц: турбогруппа (компрессор и турбина), две камеры сгорания, маслобак с установленным на нем оборудованием, входной патрубок компрессора, выходной диффузор. Все части закрыты заглушками. В отличие от паровой турбины, ГТУ размещают на ТЭС не на рамном фундаменте, а непосредственно на бетонном основании, установленном на нулевой отметке машзала. Входную шахту компрессора посредством воздушного короба соединяют с КВОУ, где происходит тщательная фильтрация воздуха, исключающая износ проточной части компрессора, забивание охлаждающих каналов в рабочих лопатках и другие неприятности. КВОУ размещают на крыше здания, экономя площадь здания. К выходному концу вала компрессора присоединяется ротор электрогенератора, а к выходному диффузору ГТУ – переходный диффузор, напрвляющий газы в котел-утилизатор.

ГТУ является универсальным двигателем, имеющим различное назначение. Наибольшее распространение они получили в авиации и дальнем газоснабжении. В стационарной энергетике на тепловых электрических станциях применяются ГТУ различного назначения. ГТУ пикового назначения работают в периоды максимума потребления электрической энергии. Резервные ГТУ обеспечивают собственные нужды ТЭС в период, когда основное оборудование не эксплуатируется. К отраслям промышленности, где применение газовых турбин создает большие преимущества, относится доменное производство, где ГТУ являясь приводом воздуходувки, подающей воздух в доменную печь, использует в качестве рабочего тела доменный газ, являющийся побочным продуктом доменной печи. На железнодорожном транспорте газотурбинные локомотивы (газотурбовозы) получили некоторое применение на линиях большой протяженности. Ряд ГТУ эксплуатируется в торговом и военно-морском флоте в основном на легких и сторожевых быстроходных судах, где особое значение имеет компактность и малая масса двигателя.. Находится в стадии исследования экспериментальных образцов газотурбинный автомобиль. Лучшие экспериментальные двигатели по экономичности достигли уровня современных бензиновых автомобильных двигателей при меньшей массе.

  В настоящее время в России действует несколько тысяч ТЭЦ и ГРЭС, а также более 66 тысяч котельных, которые дают практически 80% вырабатываемого тепла. В этом плане, Россия является безусловным мировым лидером по объемам централизованного теплоснабжения. Заметим, что по части централизации Россия является мировым лидером не только в области энергетики.
  Однако экспертами отмечаются неэффективность использования газа на устаревших агрегатах, а также низкий уровень КПД традиционных паросиловых турбин, который не превышает 38%. В централизованных сетях тепло производится большей частью на оборудовании прошлых поколений, избыток же тепла «греет» воздух.
  Использование локальных систем производства электрической и тепловой энергии с использованием газотурбинных энергетических установок (ГТУ) , работающих на природном газе или пропане является одним из возможных решений данной задачи.
  В связи с этим, наметилась тенденция на строительство децентрализованных комбинированных источников электро и теплоснабжения (так называемый режим когенерации ), устанавливаемых как в существующих отопительных котельных, так и на вновь строящихся источниках тепла. Наиболее актуальным является переход на новые небольшие объекты с применением современных газовых турбин, обеспечивающих когенерацию.

В развитых странах увеличивается доля установок малой энергетики с когенерационным циклом, позволяющим оптимизировать выработку тепла и электроэнергии социальной и промышленной инфраструктуры, а также обеспечить эффективное энергосбережение. Например, в США и Великобритании доля когенерации в малой энергетике достигает 80%, в Нидерландах – 70%, в Германии – 50%. За рубежом этот процесс активно поддерживается государством и через законодательное регулирование, и посредством бюджетного финансирования.
  Основой экономической эффективности газотурбинных когенеративных энергетических установок является их высокая электрическая и тепловая экономичность, достигаемая за счет базового режима их работы на тепловом потреблении (отопление, горячее водоснабжение, отпуск тепла для производственных нужд).
  Газотурбинные установки получили в настоящее время признание в энергетике, как полностью освоенное, надежное оборудование.
  Эксплуатационные показатели ГТУ на электростанциях находятся на том же уровне, что и традиционное энергетическое оборудование. Для них характерна готовность к работе в течение 90% календарного времени, 2 – 3 летний ремонтный цикл, безотказность пусков 95 – 97%.
  Малый удельный вес, компактность, простота транспортировки и легкость монтажа являются одними из основных достоинств газотурбинных установок, наиболее привлекательным с точки зрения их использования.
  К преимуществам ГТУ также относятся короткие сроки строительства, повышение надежности тепло и электро-снабжения потребителей, минимальные объемы вредных выбросов в окружающую среду, снижение инерционности теплового регулирования и потерь в тепловых сетях, относительно сетей подключенных к крупным РТС и ТЭЦ.


  Описание газотурбинной технологии .
  Основой ГТУ является газогенератор, служащий источником сжатых горячих продуктов сгорания для привода силовой турбины.
  Газогенератор состоит из компрессора, камеры сгорания и турбины привода компрессора. В компрессоре сжимается атмосферный воздух, который поступает в камеру сгорания, где в него через форсунки подается топливо (обычно газ), затем происходит сгорание топлива в потоке воздуха. Продукты сгорания подаются на турбину компрессора и силовую турбину (при одновальном варианте компрессор и силовуая турбина объеденены).Мощность, развиваемая силовой турбиной, существенно превышает мощность, потребляемую компрессором на сжатие воздуха, а также преодоление трения в подшипниках и мощность, затрачиваемую на привод вспомогательных агрегатов. Разность между этими величинами представляет собой полезную мощность ГТУ.
  На валу турбины расположен турбогенератор (электрический генератор).
  Отработанные в газотурбинном приводе газы через выхлопное устройство и шумоглушитель уходят в дымовую трубу. Возможна утилизация тепла выхлопных газов, когда отработанные газы поступают в котел-утилизатор, в котором происходит выработка тепловой энергии в виде пара и/или горячей воды. Пар или горячая вода от котла-утилизатора могут передаваться непосредственно к тепловому потребителю.
  Электрический КПД современных газотурбинных установок составляет 33–39%. Однако с учетом высокой температуры выхлопных газов в мощных газотурбинных установках имеется возможность комбинированного использования газовых и паровых турбин. Такой инженерный подход позволяет существенно повысить эффективность использования топлива и увеличивает электрический КПД установок до 57–59%.

Достоинствами газотурбинных установок являются малый удельный вес, компактность, простота транспортировки и легкость монтажа. Допускается монтаж ГТУ на техническом этаже здания или крышное расположение маломощных газотурбинных установок. Это полезное свойство ГТУ является важным фактором в городской застройке.
  При эксплуотации газотурбинных установок содержание вредных выбросов NOх и CO в выхлопных газах у них минимально. Такие отличные экологические качества позволяют без проблем размещать газотурбинные установки в непосредственной близости от проживания людей.

Вдобавок ГТУ небольшой мощности обычно поставляются в виде одного или нескольких блоков полной заводской готовности, требующих небольшого объема монтажных работ, а их сравнительно небольшие размеры позволяют их устанавлиать в условиях стесненного генерального плана. Отсюда и относительная дешевизна строительных и монтажных работ.
  Газотурбинные установки имеют незначительные вибрации и шумы в пределах 65–75 дБ (что соответствует по шкале уровня шума звуку пылесоса на расстоянии 1 метр). Как правило, специальная звуковая изоляция для подобного высокотехнологичного генерационного оборудования не нужна.
  Современные газотурбинные установки отличаются высокой надежностью. Есть данные о непрерывной работе некоторых агрегатов в течение нескольких лет. Многие поставщики газовых турбин производят капитальный ремонт оборудования на месте, производя замену отдельных узлов без транспортировки на завод - изготовитель, что существенно снижает затраты на обслуживание агрегата.
  Большинство газотурбинных установок обладают возможностью к перегрузке, т.е. увеличению мощности выше номинальной. Достигается это путем повышения температуры рабочего тела.
  Однако, производители накладывают жесткие ограничения на продолжительность таких режимов, допуская работу с превышением начальной температуры не более нескольких сотен часов. Нарушение этих ограничений заметно снижает ресурс установки.


Ложка дегтя.
  Тем не менее, при внедрении энергетических газотурбинных установок есть и сложности. Это, прежде всего, необходимость предварительного сжатия газового топлива, что заметно удорожает производство энергии особенно для малых ГТУ и в ряде случаев является существенным препятствием на пути их внедрения в энергетику. Для современных ГТУ с высокими степенями сжатия воздуха, необходимое давление топливного газа может превышать 25-30 кг/см 2 .
  Другим существенным недостатком ГТУ является резкое падение КПД при снижении нагрузки.
  Срок службы ГТУ значительно меньше, чем у других энергетических установок и находится обычно в интервале 45-125 тыс. часов.

Исторически сложилось так, что пионерами в освоении газотурбинной технологии являлись создатели двигателей для кораблей и самолетов. Поэтому, в настоящее время, они накопили наибольший опыт в этой области и являются наиболее квалифицированными специалистами.
  В России, ведущие позиции в изготовлении газотурбинных энергетических установок занимают фирмы, разрабатывающие и изготовляющие авиационные газотурбинные дви-гатели и газотурбинные установки, созданные специально для энергетического использования:
   - АО «Люлька-Сатурн» (г. Москва),
   - ОАО «Рыбинские Моторы» (г. Рыбинск),
  оба входят в НПО «Сатурн» ,
   - НПП им. В.Я. Климова (г. Санкт-Петербург),
   - ФГУП ММПП «Салют» (г. Москва),
  и другие

В 2004-2006 гг в Москве с участием ОАО «Сатурн – Газовые турбины» было осуществлено строительство и эксплуатация экспериментальных газотурбинных установок (ГТУ) на РТС «Курьяново» и РТС «Пенягино» . Основная задача использования газотурбинных установок – обеспечение независимого снабжения электроэнергией и теплом объектов жилищно-коммунального хозяйства. В обоих РТС было установлены по два газотурбинных агрегата ГТА-6РМ единичной мощностью 6 МВт. ГТА-6РМ является одним из основных видов наземной продукции НПО «Сатурн».
  Газотурбинные агрегаты ГТА-6РМ собираются на базе серийных, сравнительно дешевых, авиационных двигателей Д-30КУ/КП , зарекомендовавших себя как самый надежный двигатель России, который эксплуатируется на массовых самолетах ИЛ-62М, ТУ-154М и ИЛ-76. Общая наработка этих двигателей превысила 36 млн. часов.
  Агрегаты выпускаются в блочно-модульном и цеховом (станционном) исполнении и могут эксплуатироваться при одиночной работе, или в комплексе, с турбогенераторами разных серий, имеющих идентичные эксплуатационные характеристики, водогрейными или паровыми котлами-утилизаторами.
  В 2005 году ГТА-6РМ вошел в число 100 лучших товаров России, ему был официально присвоен статус «Гордость Отечества».

Эксперимент показал, что использование ГТУ в системе РТС позволяют повысить надежность в обеспечении теплом городского хозяйства и жилого сектора столицы за счет дублирования и резервирования существующих систем жизнеобеспечения, а также повысить энергозащищенность городского хозяйства.

И надо сказать, правительство Москвы всерьез зделало ставку на массовом использовании ГТУ в энергетическом комплексе столицы.
  Вот выдержки из постановления от 29 декабря 2009 г. N 1508-ПП "О Схеме теплоснабжения города Москвы на период до 2020 года."
  Приоритетным направлением развития теплоснабжения города Москвы на период до 2020 года является реализация технологии комбинированной выработки тепла и электроэнергии с дополнительным привлечением теплофикационного ресурса и покрытия тепловых и электрических нагрузок потребителей города новыми газотурбинными электростанциями .
....................................
  Дальнейшее развитие системы теплоснабжения должно основываться на:
 .............................................
  - установке на электростанциях автономных источников генерации (газотурбинных установок ) для пуска электростанции при потере связи с энергосистемой и автономного электроснабжения пиковых водогрейных котлов в аварийных режимах.

Схемы и показатели газотурбинных установок электростанций

Газотурбинные электростанции в СССР в качестве самостоятельных энергетических установок получили ограниченное распростра­нение. Серийные газотурбинные установки (ГТУ) обладают невысокой экономичностью, потребляют, как правило, высококачественное топливо (жидкое или газообразное). При ма­лых капитальных затратах на сооружение они характеризуются высокой маневренностью, поэтому в некоторых странах, например в США, их используют в качестве пиковых энергоустановок. ГТУ имеют по сравнению с паровыми турбинами повышенные шумовые характеристики, требующие дополнительной звукоизоляции машинного отделения и воздухозаборных устройств. Воздушный компрес­сор потребляет значительную долю (50-60%) внутренней мощности газовой турбины. Вследствие специфического соотношения мощностей компрессора и газовой турбины диапазон из­менения электрической нагрузки ГТУ невелик.

Единичная мощность установленных газо­вых турбин не превышает 100-150 МВт, что значительно меньше требуемой единичной мощности крупных энергоблоков.

Большинство современных ГТУ работает по схеме непрерывного сгорания топлива и выполняется по открытому (разомкнутому) или закрытому (замкнутому) циклу в зависи­мости от вида сжигаемого топлива.

В ГТУ открытого цикла в качестве топли­ва используется жидкое малосернистое газо­турбинное топливо или природный газ, кото­рые подаются в камеру сгорания (рис. 9.1). Необходимый для сгорания топлива воздух очищается в комплексном воздухоочиститель­ном устройстве (фильтре) и сжимается в ком­прессоре до давления МПа. Для получения заданной температуры газов перед газовой турбиной °С в камере сгорания поддерживается нужный избыток воздуха (2,5-5,0) с учетом теоретической температуры горения топлива, вида топли­ва, способа его сжигания и др. Горячие газы являются рабочим телом в газовой турбине, где они расширяются, а затем при температу­ре °С выбрасываются в дымо­вую трубу.

Рис. 9.1. Принципиальная тепловая схема ГТУ откры­того цикла:

К - воздушный компрессор; ГТ - газовая турбина; Г - элект­рогенератор; ПУ - пусковое устройство; Ф- воздушный фильтр; КС - камера сгорания топлива

ГТУ замкнутого цикла (рис. 9.2) позво­ляют использовать как твердое, так и высо­косернистое жидкое топливо (мазут), сжи­гаемое в камере сгорания, где установлен подогреватель рабочего тела, обычно воздуха. Включение в схему воздухоохладителя умень­шает работу сжатия в компрессоре, а регене­ратора - повышает экономичность ГТУ. Пока не получили применения ГТУ замкнутого цик­ла с другими рабочими телами (гелий и т. п.).

Основные преимущества ГТУ для энерго­системы заключаются в их мобильности. В за­висимости от типа установки ее время пуска и нагружения составляет 5-20 мин. ГТУ ха­рактеризуются более низкой удельной стои­мостью (на 50-80% меньше, чем у базовых энергоблоков), высокой степенью готовности к пуску, отсутствием потребности в охлажда­ющей воде, возможностью быстрого строи­тельства ТЭС при малых габаритах электро­станции и незначительном загрязнении окру­жающей среды. Вместе с тем ГТУ имеют невысокий КПД производства электроэнергии (28-30%), заводское изготовление их слож­нее, чем паровых турбин, они нуждаются в до­рогих и дефицитных видах топлива. Эти обстоятельства определили и наиболее рацио­нальную область использования ГТУ в энер­госистеме в качестве пиковых и обычно авто­номно запускаемых установок с использова­нием установленной мощности 500- 1000 ч/год. Для таких установок предпочти­тельна конструктивная схема в виде одновальной ГТУ простого цикла без регенерации или с регенератором теплоты уходящих газов (рис. 9.3,а, б). Такая схема характеризуется большой простотой и компактностью установ­ки, которая в значительной степени изготав­ливается и монтируется на заводе. Энергети­ческие ГТУ, эксплуатация которых планиру­ется в полубазовой части графика электриче­ской нагрузки, экономически оправдано вы­полнять по более сложной конструктивной схеме (рис. 9.3,в).

Рис. 9.2. Принципиальная схема ГТУ закрытого цикла:

ВП - воздухоподогреватель; ГТ - газовая турбина; Р - реге­нератор; ВК -воздушный компрессор; Г - электрогенератор; ПУ - пусковое устройство

Рис. 9.3. Конструктивные схемы различных типов ГТУ:

а - ГТУ простого цикла без регенерации; б - ГТУ простого цикла с регенератором теплоты уходящих газов; в - двухвальная ГТУ с двухступенчатым подводом теплоты топлива: Т - подвод топлива; КВД. КПД - воздушные компрессоры высо­кого и низкого давления; ГТВД, ГТНД - газовые турбины вы­сокого и низкого давления

В Советском Союзе работают газотурбин­ные электростанции с ГТУ типов ГТ-25-700, ГТ-45-3, ГТ-100-750-2 и других с начальной температурой газов перед газовой турбиной 700-950 °С. Ленинградским металлическим заводом разработаны проекты новой серии ГТУ мощностью 125-200 МВт при начальной температуре газов соответственно 950, 1100 и 1250 °С. Они выполнены по простой схемес открытым циклом работы, одновальными, без регенератора (табл. 9.1). Тепловая схема газотурбинной установки ГТ-100-750-2 ЛМЗ показана на рис. 9.4,а, а компоновка электростанции с такими турбинами - на рис. 9.4,б. Эти ГТУ эксплуатируются на Краснодарской ТЭЦ, на ГРЭС им. Классона Мосэнерго, на пиковой ТЭС в г. Инота Вен­герской Народной Республики и др.

Таблица 9.1

Показатели ГТУ
Газотурбинная установка Электрическая мощность, МВт Расход возду- ха через ком- прессор,кг/с Степень сжа- тия в компрес- соре Начальная тем-ра газов, о С Электрический КПД,%
ГТ-25-700* 194,5 4,7/9,7
ГТ-35-770 6,7 27,5
ГТЭ-45-2** 54,3(52,9) 7,7 28(27,6)
ГТ-100-750-2М* 4,5/6,4 750/750
ГТЭ-150
ГТЭ-200 15,6
М9 7001 «Дженерал электрик» 9,6 30,7

* Турбинаи компрессор двухвальные; вал с турбиной и компрессором высокого давления имеет повышенную частоту вращения.

** Приработе на природном газе (жидком газотурбинном топливе).



Рис. 9.4. Газотурбинная установка ГТ-100-750-2 ЛМЗ:

а - тепловая схема: 1-8 - подшипники ГТУ; / - воздух из атмосферы; II - охлаждающая вода; III - топливо (природ­ный газ); /V - уходящие газы; V - пар к пусковой турбине (р=1,2 МПа, t=235°С); ГШ- глушитель шума; КНД - компрессор низкого давления; ВО - воздухоохладители; КВД - ком­прессор высокого давления; КСВД - камера сгорания высокого давления; ТВД - турбина высокого давления; КСНД - камера сгорания низкого давления; ТНД - турбина низкого давления; ВП - внутренний подшипник; В - возбудитель; ПТ - пусковая турбина; АПК - антипомпажные клапаны за КНД; б - компоновка (поперечный разрез):/ - КНД; 2-ВО; 3 - КВД; 4 - КСВД; 5 - ТВД; 6 - КСНД; 7-ТНД; 8 - ПТ; 9 - дымовая труба; 10 - антипомпажный кла­пан (АПК); Л-электрогенератор (Г); 12- мостовой кран; 13- фильтры для очистки воздуха; 14 - глушители шума; 15 - маслонасосы системы регулирования; 16- теплофикационные подо­греватели; /7 - шиберы на выхлопных газоходах; 18 - масло­охладители

Жидкое газотурбинное топливо, применяе­мое для отечественных ГТУ, на электростан­ции подвергается фильтрации и промывке от солей щелочных металлов. Затем в топливо добавляют присадку с содержанием магния для предотвращения ванадиевой коррозии. По данным эксплуатации такая подготовка топлива способствует длительной работе га­зовых турбин без загрязнения и коррозии проточной части.

Ростовским отделением АТЭП разработан типовой проект пиковой газотурбинной элек­тростанции с ГТУ ГТЭ-150-1100. На рис. 9.5 приведена принципиальная тепловая схема такой ГТУ, рассчитанной на сжигание жид­кого газотурбинного топлива или природного газа. ГТУ выполнена по простой открытой схеме, роторы газовой турбины и компрессора расположены в одном транспортабельном кор­пусе, что значительно сокращает сроки мон­тажа и трудозатраты. Газотурбинные агрега­ты устанавливаются поперечно в машинном зале электростанции с пролетом 36 и ячейкой блока в 24 м. Дымовые газы отводятся в ды­мовую трубу высотой 120 м с тремя металли­ческими газоотводящими стволами.

Рис. 9.5. Принципиальная тепловая схема газотурбин ной установки ЛМЗ ГТЭ-150-1100:

ВК - вспомогательный компрессор пневмораспыления топлива: ПТ - паровая турбина; Р - редуктор блока разгонного устройства; ЭД - электродвигатель вспомогательного компрессора ГТ - газовая турбина; Т - подвод жидкого топлива, соответствующего ГОСТ 10743-75, = 42,32 МДж/кг (10 110 ккал/кг) ДТ - дымовая труба; АПК - антипомпажный клапан

Важной особенностью газотурбинных ус­тановок является зависимость их показателей от параметров наружного воздуха, а в первую очередь от его температуры. Под ее влиянием изменяется расход воздуха через компрессор, соотношение внутренних мощностей компрес­сора и газовой турбины и в итоге - электри­ческая мощность ГТУ и ее КПД. В МЭИ вы­полнены многовариантные расчеты работы ГТЭ-150 на жидком газотурбинном топливе и на тюменском природном газе в зависимости от температуры и давления наружного возду­ха (рис. 9.6, 9.7). Полученные результаты подтверждают повышение тепловой эконо­мичности ГТУ с ростом температуры газов перед газовой турбиной и с понижением температуры наружного воздуха . Повы­шение температуры от =800°С до = =1100°С повышает электрический КПД ГТУ на 3% при = -40 °С и на 19% при = 40 °С. Понижение температуры наружного воздуха с +40 до -40°С приводит к значи­тельному увеличению электрической мощно­сти ГТУ. Для различных начальных темпера­тур это увеличение составляет 140-160%. Для ограничения роста мощности ГТУ при понижении температуры наружного воздуха и с учетом возможности перегрузки электро­генератора (в рассматриваемом случае типа ТГВ-200) приходится воздействовать либо на температуру газов перед газовой турбиной, уменьшая расход топлива (кривые 4 на рис. 9.6 и 9.7), либо на температуру наруж­ного воздуха, подмешивая небольшое количе­ство уходящих газов (2-4%) к засасываемо­му компрессором воздуху. Постоянный расход воздуха в диапазоне нагрузок 100-80% мож­но поддерживать также прикрытием входного направляющего аппарата (ВНА) компрессо­ра ГТУ.

Рис. 9.6. Зависимость электрической мощности ГТУ от температуры наружного воздуха :

1- =1100°С; 2- = 950°С; 3 - = 800 °С; 4- = ; - работа ГТУ на природном газе; работа ГТУ на жидком топливе

Рис. 9.7. Зависимость электрического КПД ГТУ от температуры наружного воздуха (обозначения см. на рис. 9.6)

Изменение электрического КПД в сторону его уменьшения особенно значительно притемпературе наружного воздуха выше 5-10 °С (рис. 9.7). С повышением температуры наружного воздуха от +15 до +40 С С этот КПД уменьшается на 13-27% в зависимости от температуры газов перед газовой турбиной и вида сжигаемого топлива.

Повышение наружной температуры воз­духа увеличивает коэффициент избытка воз­духа за газовой турбиной и температуру ухо­дящих газов, что способствует ухудшению энергетических показателей ГТУ.

В последние годы (приблизительно с 50-х г. прошлого столетия) на ТЭС для привода электрических генераторов стали широко использоваться газовые турбины.

Газотурбинные установки (ГТУ) могут работать со сгоранием топлива при постоянном давлении (рис. 6.1) и при постоянном объеме (рис. 6.2). Соответствующие им идеальные циклы делятся на циклы с подводом теплоты в процессе при постоянном давлении и постоянном объеме .

Рис. 6.1. Схема ГТУ со сгоранием топлива при постоянном давлении: 1 - турбокомпрессор; 2 - газовая турбина; 3 - топливный насос; 4 - камера сгорания; 5 - топливная форсунка;

6 - активная зона камеры сгорания

Рис.6.2. Схема ГТУ со сгоранием топлива при постоянном объеме: 5, б, 7 - соответственно топливный, воздушный и газовый клапаны; 8 - запальное устройство; 9 - ресивер; остальные обозначения те же, что на рис. 6.1

На практике получили распространение ГТУ с разомкнутым (открытым) циклом со сгоранием топлива (с подводом теплоты к рабочему телу) при постоянном давлении с последующим расширением смеси продуктов сгорания с воздухом в проточной части турбины (цикл Брайтона) (см. рис. 6.6).

В ГТУ со сгоранием топлива при постоянном давлении процесс горения осуществляется непрерывно (см. п. 6.2), а в ГТУ со сгоранием топлива при постоянном объеме процесс горения является периодическим (пульсирующим). Сжатый в компрессоре 1 воздух (см. рис. 6.2) подается в ресивер 9 (сосуд большой емкости для выравнивания давления), откуда через воздушный клапан 6 поступает в камеру сгорания 4. Сюда же топливным насосом 3 через топливный клапан 5 подается топливо. Процесс горения производится при закрытых топливном, воздушном и газовом клапанах 5, 6, 7. Воспламенение топливовоздушной смеси осуществляется устройством 8 (электрической искрой). После сгорания топлива в результате повышения давления в камере 4 открывается газовый клапан 7. Продукты сгорания, проходя через сопловые аппараты (на рис. 6.2 не показаны), поступают на рабочие лопатки и приводят во вращение ротор газовой турбины 2.

Рабочим телом ГТУ служат в основном газообразные продукты сгорания органического топлива в смеси с воздухом. В качестве топлива используется природный газ, хорошо очищенные искусственные газы и специальное газотурбинное жидкое топливо (обработанное дизельное моторное и соляровое масло).

Особенностью работы ГТУ является то, что только часть (20-40%) подаваемого компрессором воздуха вводится в активную зону камеры сгорания и участвует в процессе горения топлива при температуре порядка 1500-1600 °С. Остальная часть воздуха (60-80%) предназначена для снижения температуры газов перед турбиной до 1000-1300 °С (для стационарной ГТУ) по условиям надежности и долговечности работы ее лопаточного аппарата, с чем связан повышенный избыток воздуха в газах а г перед турбиной и за ГТУ. а г уменьшается с ростом начальной температуры рабочего тела перед газовой турбиной и в различных установках составляет 2,5-5. КПД ГТУ существенно ниже, чем КПД ПТУ на паровом цикле, что обусловлено наличием воздушного компрессора, потребляемая мощность которого составляет 40-50% мощности газовой турбины.

Газовая турбина меньше и легче паровой, поэтому при пуске она прогревается до рабочих температур значительно быстрее, в отличие от паротурбинной установки, снабженной паровым котлом, который требует медленного прогрева (десятки часов) во избежание аварии из-за неравномерных тепловых удлинений, особенно массивного барабана.

Благодаря большой маневренности (быстрый пуск в работу и нагружение) ГТУ применяют в энергетике, прежде всего для покрытия пиковых нагрузок и в качестве аварийного резерва для собственных нужд крупных энергосистем. Меньший КПД ГТУ по сравнению с паросиловой установкой (ПСУ) в этом случае играет незначительную роль. Для таких ГТУ характерны частые пуски (до 1000 в год) при относительно малом числе часов использования (100-1500 ч/год).

Разновидностью ГТУ являются установки с приводом электрического генератора от двигателя внутреннего сгорания (дизельные электростанции), где в качестве топлива, как и в ГТУ, используется природный газ или качественное жидкое топливо. Однако дизельные электростанции, получившие распространение в странах Ближнего Востока, уступают по единичной мощности ГТУ, хотя и имеют более высокий КПД.

КПД простейших энергетических ГТУ (рис. 6.3) в 50-60-е гг. XX в. составлял 14-18%. В настоящее время с целью повышения КПД ГТУ выполняют с несколькими ступенями подвода теплоты и промежуточным охлаждением сжимаемого воздуха, а также с регенеративным подогревом сжатого в компрессоре воздуха отработавшими в турбине газами, приближая тем самым реальный цикл к циклу Карно, а КПД ГТУ-до 27-37%.

КПД газотурбинных установок ограничивается начальной температурой рабочего тела (1100-1300 °С и выше для ГТУ 5-го поколения) и единичной мощностью из-за возрастающих затрат энергии на собственные нужды, в том числе и на привод компрессора. Первое ограничение в настоящее время устранить затруднительно. Второе ограничение может быть устранено, если в турбину вместо низкоэнтальпийного агента (смеси продуктов сгорания с воздухом) подавать высокоэнтальпийный рабочий агент при той же начальной температуре. Чаще в продукты сгорания добавляют водяной пар. ГТУ, работающие с рабочими телами, состоящими из смесей паров воды и газов или использующие в тепловой схеме раздельно газы и пар, называются парогазовыми установками (ПГУ), а их циклы - парогазовыми. Первые ПГУ называют монарными, а вторые - бинарными .

В период освоения установок с раздельными рабочими телами было опробовано несколько тепловых схем. Наиболее эффективной оказалась схема, в которой паровой цикл по отношению к газовому является полностью утилизационным . Такие установки получили название утилизационных ПГУ или ПГУ-У. В утилизационной ПГУ паровая часть установки работает без дополнительной затраты топлива. Подобная ПГУ из-за высокой начальной температуры цикла (более 1000-1300 °С) может иметь КПД более 60%, что существенно выше, чем у обычной паротурбинной установки и у отдельной ГТУ. Важнейшим фактором повышения КПД ПГУ является использование продуктов сгорания топлива как рабочего тела в области высоких температур (в газовой турбине) и водяного пара в области низких температур (в паровой турбине).

ГТУ открытого типа уступают паротурбинным установкам по единичной мощности, имеют более низкий КПД, менее долговечны в эксплуатации, более требовательны к сортам топлива. Дальнейшее развитие ГТУ направлено на повышение их единичной мощности, экономичности, надежности и долговечности, что в основном определяется прогрессом в области создания жаростойких материалов и разработкой эффективных способов охлаждения проточной части газовых турбин.

Газотурбинная установка - это агрегат, состоящий из газотурбинного двигателя (ГТД), редуктора, генератора и вспомогательных систем . Поток газа, образованный в результате сгорания топлива, воздействуя на лопатки турбины, создает крутящий момент и вращает ротор, который в свою очередь соединен с генератором. Генератор вырабатывает электроэнергию. В основу устройства газотурбинного агрегата положен принцип модульности: ГТУ состоят из отдельных блоков, включая блок автоматики. Модульная конструкция позволяет в кратчайшие сроки производить сервисное обслуживание и ремонт, наращивать мощность, а также экономить средства за счет того, что все работы могут производиться быстро на месте эксплуатации

Применение газотурбинных энергоустановок Газотурбинные энергоустановки применяются в качестве постоянных, резервных или аварийных источников тепло- и электроснабжения в городах, а также отдаленных, труднодоступных районах.

. Основные потребители продуктов работы ГТУ следующие:

Нефтедобывающая промышленность

Газодобывающая промышленность

Металлургическая промышленность

Лесная и деревообрабатывающая промышленность

Муниципальные образования

Сфера ЖКХ

Сельское хозяйство

Водоочистные сооружения

Утилизация отходов. Электрическая мощность газотурбинных энергоустановок колеблется от десятков киловатт до сотен мегаватт. Наибольший КПД достигается при работе в режиме когенерации (одновременная выработка тепловой и электрической энергии) или тригенерации (одновременная выработка тепловой, электрической энергии и энергии холода). Возможность получения недорогой тепловой и электрической энергии предполагает быструю окупаемость поставленной газотурбинной установки. Такая установка, совмещенная с котлом-утилизатором выхлопных газов, позволяет производить одновременно тепло и электроэнергию, благодаря чему достигаются наилучшие показатели по эффективности использования топлива. Выходящие из турбины отработанные газы в зависимости от потребностей Заказчика используются для производства горячей воды или пара. Топливо для газотурбинной установки. Газотурбинный агрегат может работать как на газообразном, так и на жидком топливе. Так, в газотурбинных установках может использоваться: дизельное топливо, керосин, природный газ, попутный нефтяной газ, биогаз (образованный из отходов сточных вод, мусорных свалок и т.п.), шахтный газ, коксовый газ, древесный газ и др. Большинство газотурбинных установок могут работать на низкокалорийных топливах с минимальной концентрацией метана (до 30%). Преимущества газотурбинных электростанций : работы на отходах производства ; низкий уровень шума и вибраций. Этот показатель не превышает 80-85 децибела.К омпактные размеры и небольшой вес дают возможность разместить газотурбинную установку на небольшой площади, что позволяет существенно сэкономить средства. Возможны варианты крышного размещения газотурбинных установок небольшой мощности. Возможность работы на различных видах газапозволяет использовать газотурбинный агрегат в любом производстве на самом экономически
выгодном виде топлива . Минимальный ущерб для окружающей среды; низкий расход масла; возможность эксплуа-тация как в автономном режиме, так и параллельно с сетью.


Возможность работы в течение длительного времени при очень низких нагрузках,в том числе в режиме холостого хода.

Максимально допустимая перегрузка:150% номинального тока в течение 1 минуты, 110% номинального тока в течение 2 часов.

О применении ГТД на транспорте. Широкое распространение ГТД получили на транспорте. За 100 лет развития дизельные двигатели достигли определенного предела, за которыми не просматриваются значительные перспективы роста их показателей. У современных дизелей максимальное давление сгорания достигает 18.0-25.0 МПа, что с учетом потерь на трение и охлаждение позволит в перспективе на локомотивах получить реальный эффективный к.п.д., равный 47%. Дальнейший рост параметров цикла не приводит к росту эффективности, что связано со свойствами реальных газов, ростом влияния вредного пространства камеры сгорания, ростом трудностей смесеобразования и ростом токсичности выхлопных газов. Уже сегодня затраты на обеспечение требований по экологии снижают экономичность дизеля на 2-3%. Затраты на обслуживание и ремонт дизелей составляют более 50% затрат на обслуживание и ремонт локомотивов. За 50 лет развития транспортные газотурбинные двигатели мощностью более 1000 л.с. догнали по топливной эффективности дизельные двигатели и обладают существенными резервами роста экономичности. По экологическим характеристикам лучшие ГТД превосходят лучшие дизели в 20-30 раз. Транспортные ГТД превосходят дизели по пусковым характеристикам, расходу масла и расходам на текущее обслуживание. ГТД постепенно вытесняют дизели и паровые турбины с рынков морского флота (WR-21 четвертого поколения обладает эффективным к.п.д. более 42% при мощности 30% от номинальной), крупнотоннажных автомобилей и карьерных машин. Анализ отечественных и зарубежных газотурбинных силовых установок показал перспективность применения газотурбинной тяги на локомотивах по следующим причинам: снижение затрат на перевозку груза за счет согласования автономного и электрического тягового состава по осевой мощности, секционной мощности, скоростным характеристикам и унификации экипажа; снижение эксплуатационных расходов; увеличение эксплуатационной готовности и надежности локомотивов, что сокращает сроки окупаемости подвижного состава и повышает конкурентоспособность железнодорожного транспорта; существенное улучшение экологической обстановки на линии и особенно врайоне станций. Термодинамический цикл ГТУ. Основными недостатками поршневых двигателей внутреннего сгорания являются ограниченность их мощности и невозможность адиабатного расширения рабочего тела до атмосферного давления, которые отсутствуют в газотурбиннных установках. В ГТУ рабочим телом являются продукты сгорания жидкого или газообразного топлива.

На рис.3.13 дана схема простейшей газотурбинной установки со сгоранием топлива при постоянном давлении.

Топливным насосом 5 и компрессором 4 топливо и воздух через форсунки 6 и 7 поступают в камеру сгорания 1. Из камеры продукты сгорания направляются в комбинированные сопла 2, где они расширяются, и поступают на лопатки газовой турбины 3
Рис.3.13. Схема ГТУ.

На рис.3.14 и рис3.15 представлены идеальный цикл ГТУ в P-V и T-S диаграммах. 1-2 - адиабатное сжатие воздуха в компрессоре до давления Р 2 ;
2-3 – подвод теплоты q 1 при постоянном давлении Р 2 (сгорание топлива);
3-4 – адиабатное расширение газо- воздушной смеси до начального давления Р 1 ;
4-1 – охлаждение рабочего тела при постоянном давлении Р 1 (отвод теплоты q 2);
Характеристиками цикла являются:
степень повышения давления l = Р 2 / Р 1 ;
степень изобарного расширения r = n 3 /n 2 .
Удельная работа турбины: l т = i 3 – i 4 (кДж/кг). (3-49) Удельная работа компрессора: l к = i 2 – i 1 (кдж/кг). (3-50) Удельная полезная работа ГТУ равна разности работ турбины и компрессора: l ГТУ = l т – l к (3-51) Термический к.п.д. цикла ГТУ имеет вид: η t = 1 – 1/ l (γ-1)/ γ . (3-51) γ = 1,4 Теоретическая мощность газовой турбины, компрессора и установки (ГТУ): N т = l т ·M/3600 = (i 3 – i 4)·M/3600 (кВт), (3-52) М-расход газа в кг/час . 1 час =3600 сек.
N к = l к ·M/3600 = (i 2 – i 1)·M/3600 (квт), (3-53)
Рис.3.14. Р-V диаграмма идеального цикла ГТУ. N ГТУ = l ГТУ ·M/3600 = [(i 3 – i 4) (i 2 – i 1) ]·M/3600 (кВт). (3-54)

Рис.3.15. T-S диаграмма идеального цикла ГТУ.

Действительный цикл ГТУ отличается от теоретического наличием потерь на трение и вихреообразование в турбине и компрессоре. Эффективными методами повышения экономичности газотурбинных установок являются: регенерация теплоты, ступенчатое сжатие, расширение рабочего тела и пр.

Танковый газотурбинный двигатель-гиперссылка

§ 3.6. Реактивные двигатели. Реакти́вный дви́гатель - двигатель, создающий необходимую для движения силу тяги посредством преобразования исходной энергии в кинетическую энергию реактивной струи рабочего тела. Рабочее тело (разогретый поток продуктов горения) с большой скоростью истекает из сопла дигателя и вследствие закона сохранения импульса появляется реактивная сила, толкающая двигатель в противоположном направлении. Для разгона рабочего тела может использоваться как тепловой нагрев, так и другие физические принципы (ионный двигатель, фотонный двигатель). Реактивный двигатель сочетает в себе собственно двигатель с движителем, то есть обеспечивает собственное движение без участия промежуточных механизмов. Существует два основных класса реактивных двигателей: воздушно-реактивные двигатели –тепловые двигатели, рабочее тело которых образуется при реакции окисления горючего вещества кислородом воздуха. ракетные двигатели - содержат все компоненты рабочего тела на борту и способны работать в безвоздушном пространстве. Ракетные двигатели в зависимости от вида топлива (твёрдого или жидкого) подразделяются на пороховые и жидкостные. Двигатели первого типа используют твёрдое топливо, имеющее в своём составе необходимый для горения кислород. Топливом для жидкостных реактивных двигателей служат: водород и соединения водорода с углеродом; твёрдые металлы с малой атомной массой (литий, бор) и их соединения с водородом. В качестве окислителей ипользуют жидкий кислород, перекись водорода, азотная кислота. Схема жидкостного реактивного двигателя показана на рис.3.16. Жидкое топливо и жидкий окислитель подаются в камеру сгорания 2 при помощи питательных насосов 1. Топливо сгорает при постоянном давлении (что является наиболее простым) при открытом сопло 3. Газообразные продукты сгорания, расширяясь в сопло и вытекая из него с большой скоростью, создают необходимую для движения летательного аппарата силу тяги.

Рис. 3.16 Схема жидкостного реак- Рис. 3.17. Цикл жидкостного