Применение ряда фибоначчи. Последовательность фибоначчи и принципы золотого сечения

Последовательность Фибоначчи, ставшая известной большинству благодаря фильму и книге «Код да Винчи», это ряд чисел, выведенный итальянским математиком Пизанским Леонардо, более известным под псевдонимом Фибоначчи, в тринадцатом веке. Последователи ученого заметили, что формула, которой подчинен данный ряд цифр, находит свое отображение в окружающем нас мире и перекликается с другими математическими открытиями, тем самым открывая для нас дверь в тайны мироздания. В этой статье мы расскажем, что такое последовательность Фибоначчи, рассмотрим примеры отображения этой закономерности в природе, а также сравним с другими математическими теориями.

Формулировка и определение понятия

Ряд Фибоначчи - это математическая последовательность, каждый элемент которой равен сумме двух предыдущих. Обозначим некой член последовательности как х n. Таким образом, получим формулу, справедливую для всего ряда: х n+2 =х n +х n+1. При этом порядок последовательности будет выглядеть так: 1, 1, 2, 3, 5, 8, 13, 21, 34. Следующим числом будет 55, так как сумма 21 и 34 равна 55. И так далее по такому же принципу.

Примеры в окружающей среде

Если мы посмотрим на растение, в частности, на крону из листьев, то заметим, что они распускаются по спирали. Между соседними листьями образуются углы, которые, в свою очередь, образуют правильную математическую последовательность Фибоначчи. Благодаря этой особенности каждый отдельно взятый листочек, который растет на дереве, получает максимальное количество солнечного света и тепла.

Математическая загадка Фибоначчи

Известный математик представил свою теорию в виде загадки. Звучит она следующим образом. Можно поместить пару кроликов в замкнутое пространство для того, чтобы узнать, какое количество пар кроликов родится в течении одного года. Учитывая природу этих животных, то, что каждый месяц пара способна производить на свет новую пару, а готовность к размножению у них появляется по достижении двух месяцев, в итоге он получил свой знаменитый ряд чисел: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 - где показано количество новых пар кроликов в каждом месяце.

Последовательность Фибоначчи и пропорциональное соотношение

Этот ряд имеет несколько математических нюансов, которые обязательно нужно рассмотреть. Он, приближаясь медленнее и медленнее (асимптотически), стремится к некоему пропорциональному соотношению. Но оно иррациональное. Другими словами, представляет собой число с непредсказуемой и бесконечной последовательностью десятичных чисел в дробной части. Например, соотношение любого элемента ряда варьируется около цифры 1,618, то превосходя, то достигая его. Следующее по аналогии приближается к 0,618. Что есть обратно пропорциональным к числу 1,618. Если мы поделим элементы через один, то получим 2,618 и 0,382. Как вы уже поняли, они также являются обратно пропорциональными. Полученные числа называются коэффициентами Фибоначчи. А теперь объясним, для чего мы выполняли эти вычисления.

Золотое сечение

Все окружающие нас предметы мы различаем по определенным критериям. Один из них - форма. Какие-то нас привлекают больше, какие-то меньше, а некоторые и вовсе не нравятся. Замечено, что симметричный и пропорциональный объект гораздо легче воспринимается человеком и вызывает чувство гармонии и красоты. Цельный образ всегда включает в себя части различного размера, которые находятся в определенном соотношении друг с другом. Отсюда вытекает ответ на вопрос о том, что называют Золотым сечением. Данное понятие означает совершенство соотношений целого и частей в природе, науке, искусстве и т. д. С математической точки зрения рассмотрим следующий пример. Возьмем отрезок любой длины и разделим его на две части таким образом, чтобы меньшая часть относилась к большей как сумма (длина всего отрезка) к большей. Итак, примем отрезок с за величину один. Его часть а будет равна 0,618, вторая часть b , выходит, равна 0,382. Таким образом, мы соблюдаем условие Золотого сечения. Отношение отрезка c к a равняется 1,618. А отношение частей c и b - 2,618. Получаем уже известные нам коэффициенты Фибоначчи. По такому же принципу строятся золотой треугольник, золотой прямоугольник и золотой кубоид. Стоит также отметить, что пропорциональное соотношение частей тела человека близко к Золотому сечению.

Последовательность Фибоначчи - основа всего?

Попробуем объединить теорию Золотого сечения и известного ряда итальянского математика. Начнем с двух квадратов первого размера. Затем сверху добавим еще квадрат второго размера. Подрисуем рядом такую же фигуру с длиной стороны, равной сумме двух предыдущих сторон. Аналогичным образом рисуем квадрат пятого размера. И так можно продолжать до бесконечности, пока не надоест. Главное, чтобы величина стороны каждого последующего квадрата равнялась сумме величин сторон двух предыдущих. Получаем серию многоугольников, длина сторон которых является числами Фибоначчи. Эти фигуры называются прямоугольниками Фибоначчи. Проведем плавную линию через углы наших многоугольников и получим… спираль Архимеда! Увеличение шага данной фигуры, как известно, всегда равномерно. Если включить фантазию, то полученный рисунок можно проассоциировать с раковиной моллюска. Отсюда можем сделать вывод, что последовательность Фибоначи - это основа пропорциональных, гармоничных соотношений элементов в окружающем мире.

Математическая последовательность и мироздание

Если присмотреться, то спираль Архимеда (где-то явно, а где-то завуалированно) и, следовательно, принцип Фибоначчи прослеживаются во многих привычных природных элементах, окружающих человека. Например, все та же раковина моллюска, соцветия обычной брокколи, цветок подсолнечника, шишка хвойного растения и тому подобное. Если заглянем подальше, то увидим последовательность Фибоначчи в бесконечных галактиках. Даже человек, вдохновляясь от природы и перенимая ее формы, создает предметы, в которых прослеживается вышеупомянутый ряд. Тут самое время вспомнить и о Золотом сечении. Наряду с закономерностью Фибоначчи прослеживаются принципы данной теории. Существует версия, что последовательность Фибоначчи - это своего рода проба природы адаптироваться к более совершенной и фундаментальной логарифмической последовательности Золотого сечения, которая практически идентична, но не имеет своего начала и бесконечна. Закономерность природы такова, что она должна иметь свою точку отсчета, от чего отталкиваться для создания чего-то нового. Отношение первых элементов ряда Фибоначчи далеки от принципов Золотого сечения. Однако чем дальше мы его продолжаем, тем больше это несоответствие сглаживается. Для определения последовательности необходимо знать три его элемента, которые идут друг за другом. Для Золотой последовательности же достаточно и двух. Так как она является одновременно арифметической и геометрической прогрессией.

Заключение

Все-таки, исходя из вышесказанного, можно задать вполне логичные вопросы: "Откуда появились эти числа? Кто этот автор устройства всего мира, попытавшийся сделать его идеальным? Было ли всегда все так, как он хотел? Если да, то почему возник сбой? Что будет дальше?" Находя ответ на один вопрос, получаешь следующий. Разгадал его - появляются еще два. Решив их, получаешь еще три. Разобравшись с ними, получишь пять нерешенных. Затем восемь, далее тринадцать, двадцать один, тридцать четыре, пятьдесят пять…

Последовательность чисел Фибоначчи на протяжении многих веков, начиная с эпохи великого Леонардо и вплоть до сегодняшних дней, привлекает к себе внимание. Может быть последний пример - нашумевший роман Дэна Брауна "Код Давинчи".

Прежде всего, несколько слов о числах Фибоначчи вообще и об их производном - золотом сечении в частности. Известно, что в ряд Фибоначчи - это бесконечная последовательность чисел, каждое из которых является суммой двух предыдущих.

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,….

Происхождение этой последовательности обычно связывается с именем итальянского купца Леонардо Пизанского, более известного под прозвищем Фибоначчи. Он был великим математиком своего времени и его роль в развитии математики трудно переоценить. По его трудам, превосходящим арабские и средневековые европейские сочинения, учили математику до XVI-XVII веков.

Фибоначчи как бы напомнил человечеству то, что было известно ему еще с древнейших времен, как "золотое сечение". Геометрический смысл этой пропорции, заключается в таком делении отрезка, когда он весь относится к его большей части, как самая большая часть относится к меньшей. Значение золотого сечения иррационально, то есть оно не может быть вычислено абсолютно точно. Однако его можно приблизительно получить, разделив два соседних числа в ряде Фибоначчи, причем, чем больше величины чисел, тем точнее будет результат. Деление большего числа на меньшее дает значение Ф*=1.618…., а разделив меньшее на большее приблизительно получим Ф=0.618…...

По дошедшим до нас памятникам архитектуры и образцам материальной культуры далеких эпох можно предположить о знании древними этих соотношений. Хотя обычно считается, что понятие золотого сечения ввел Пифагор (VI в. до н.э), но вполне возможно, что это знание более древнее и он позаимствовал эти знания у египтян или вавилонян. Пропорции пирамиды Хеопса, храмов, барельефов того времени, некоторых предметов быта и украшений, из гробницы Тутанхамона соответствуют соотношениям золотого сечения. Французский архитектор Ле Kорбюзье нашел эти соответствия в пропорциях на рельефах изображающих фараонов, они присутствуют в фасаде храмового комплекса Парфенона. На древних рельефах из египетских гробниц люди держат в руках измерительные инструменты, в которых зафиксированы эти замечательные пропорции.

О золотом сечении знал Платон (IV в до н.э), это отношение упоминается в "Началах" Евклида. После Евклида подобными исследованиями занимались Гипсикл (II в. до н.э.), Папп (III в. н.э.) и др. В средневековой Европе с ним познакомились по арабским переводам "Начал" Евклида. Переводчик Дж.Kампано из Наварры (III в.) сделал к переводу комментарии. Надо отметить, что в то время эти знания были тайными, тщательно оберегались от непосвященных и хранились в строгой тайне.

В эпоху Возрождения золотому сечению уделяли внимание Леонардо да Винчи, Альбрехт Дюрер и творец начертательной геометрии монах Лука Пачоли. Он нашел в нем "божественную суть" - выражение триединства Бога сына, Бога отца и Бога духа Святого. Подразумевалось, что малый отрезок - олицетворение Бога сына, больший отрезок - Бога отца, а все вместе дух Святой.

В последующие века изучение этой пропорции продолжались. В 1855 г. немецкий и профессор Цейзинг опубликовал труд "Эстетические исследования", где объявил пропорцию золотого сечения универсальным для всех явлений природы и искусства. На основании исследования размеров несколько тысяч человеческих тел он пришел к выводу, что оно выражает средний статистический закон и пропорции человеческого тела описываются отношениями членов ряда Фибоначчи. Это проявляется в отношении самых разных частей тела - длины плеча, предплечья и кисти, кисти и пальцев и т.д.

Золотое сечение встречается не только в искусстве и архитектуре, но и в природе. Пропорции ряда Фибоначчи присутствуют в расположении листьев на деревьях, различных семян, в биоритмах и функционировании головного мозга и зрительного восприятия, музыкальных тонах, стихотворных размерах, в генных структурах живых организмов и тому подобное.

Проявление чисел Фибоначчи не ограничивается законами восприятия и живой природой. Из истории астрономии известно, что в XVIII в. немецкий астроном И. Тициус, с помощью ряда Фибоначчи нашел закономерность в расстояниях между планетами солнечной системы. Сегодня имеются многочисленные данные по проявлению золотого сечения в самых различных физических системах - в энергетических переходах элементарных частиц, в строении некоторых химических соединений и т.д. Установлены связи золотого сечения со свойствами воды, громкости и частоты звука, спектра видимого света, физико-механических свойств твердых тел и т.п. Эти факты - свидетельства независимости числового ряда от условий его проявления, что является одним из признаков его универсальности. Известны даже попытки создания хронологии человеческого общества на основе ряда Фибоначчи.

В качестве причин, объясняющих эти явления обычно приводятся результаты исследований показавших, что наиболее устойчивые природные и социальные конфигурации имеют Фибоначчи-подобную форму, так как являются оптимальными в смысле энергетики и экономии ресурсов.

В XX веке на основе последовательности Фибоначчи была создана одна из наиболее успешных методик анализа финансовых, товарных и иных рынков - волновая теория Эллиота. При наличии некоторого воображения можно усмотреть вполне очевидные аналогии между рынком финансовым и тем, что назовем "рынком политическим". Под последним, будем понимать политическую систему регулирования гражданского общества, где присутствуют интересы различных групп населения, а возможные противоречия между ними разрешаются путем договоренностей в рамках демократических процедур. Вообще, общеизвестно, что политика - это искусство компромисса. А компромисс - это всегда сделка, причем не очень неважно, торговая, посредническая или политическая. В этом смысле все политические деятели - игроки политического рынка.

При этом совершенно не важно, что движет политиками: великие идеи, личные амбиции, интересы поддерживающих их финансово-промышленных групп или определенных групп населения, либо просто, собственная корысть. Важно то, что они, проявляя свою активность, создают политические партии, продвигают некие проекты, реализуемые в законотворческой или иной деятельности. Здесь мы имеем тот же парадокс рыночной экономики. В том случае, если деятельность политиков происходит в правовом поле, независимо от мотивации она объективно полезна обществу, так как своей суетой и мельтешением эти "брокеры политического рынка" решают задачи саморегуляции общественного организма. Продолжая аналогии можно сказать, что "трейдерами и инвесторами политического рынка" можно считать те силы, которые финансируют политическую деятельность.

Если это так, то возникает соблазн применить методы анализа финансовых рынков к рынкам политическим. Одним из таких методов технического анализа является использование волнового закона Эллиота. Более шестидесяти лет тому назад Ральф Эллиотт разработал теорию поведения рынка, которую в наиболее полном виде изложил в книге "Закон природы - секрет Вселенной", вышедшей в 1946 году. Он уже тогда был уверен в том, что его теория охватывает не только поведение фондовых индексов, но и более общие законы природы, управляющие деятельностью человеческого общества.

Суть подхода Эллиота сводится к тому, что общество развивается и изменяется в виде распознаваемых моделей. Он выделил более десятка типов моделей движения ("волн"), которые возникают в потоке рыночных цен, повторяющихся по форме, но не обязательно по времени или амплитуде. Им были даны названия, определения и иллюстрация этих моделей.

Согласно его теории движение происходит по "старому доброму принципу" три шага вперед два шага назад и волны разделяются - импульсные (вперед) и корректирующие (назад). Действительно, достаточно даже беглого взгляда на график индекса Доу-Джонса или на поведение курса валют на рынке FOREX, чтобы увидеть волновое движение огромного количества больших и малых волн. Их отличает свойство, называемое "самоподобием", присущее так называемым фракталам.

Эллиот утверждал, что независимо от размера, форма волн достаточно стабильна, а порядок их чередования поддается разумному объяснению. Закон волн - это модель развития и упадка. Соотношения между отдельными волнами базируются на числах, полученных из ряда Фибоначчи и в частности на золотом сечении.

Некоторые авторы пытаются применить волновой закон Эллиота даже для анализа истории человечества, его глобального развития. Не ставя перед собой столь масштабных задач, попробуем рассмотреть с позиций применимости последовательности Фибоначчи для анализа длительности некоторых процессов, происходивших в России в XX веке, и даже попытаемся дать некий прогноз на первые десятилетия века XXI.

Необходимо отметить, что если для фондового рынка сегодня разработаны и широко используются разнообразные индексы (Доу-Джонса, NASDAQ и др.), что позволяет строить и анализировать графики их изменения во времени. Для рынка политического, такие показатели, возможно, еще предстоит создать в будущем. Интуитивно понятно, что эти гипотетические аналоги индекса Доу-Джонса должны иметь вероятностную, энтропийную природу.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

ВЫСШЕЕ НАЗНАЧЕНИЕ МАТЕМАТИКИ СОСТОИТ В ТОМ, ЧТОБЫ НАХОДИТЬ СКРЫТЫЙ ПОРЯДОК В ХАОСЕ, КОТОРЫЙ НАС ОКРУЖАЕТ.

Винер Н.

Человек всю жизнь стремится к знаниям, пытается изучить окружающий его мир. И в процессе наблюдений у него возникают вопросы, на которые требуется найти ответы. Ответы находятся, но появляются новые вопросы. В археологических находках, в следах цивилизации, отдаленных друг от друга во времени и в пространстве, встречается один и тот же элемент - узор в виде спирали. Некоторые считают его символом солнца и связывают с легендарной Атлантидой, но истинное его значение неизвестно. Что общего между формами галактики и атмосферного циклона, расположением листьев на стебле и семян в подсолнухе? Эти закономерности сводятся к так называемой «золотой» спирали, удивительной последовательности Фибоначчи, открытой великим итальянским математиком XIII века.

История возникновения чисел Фибоначчи

Впервые о том, что такое числа Фибоначчи, я услышал от учителя математики. Но, кроме того, каким образом складывается последовательность этих чисел, я не знал. Вот чем на самом деле знаменита эта последовательность, каким образом она влияет на человека, я и хочу вам рассказать. О Леонардо Фибоначчи известно немного. Нет даже точной даты его рождения. Известно, что он родился в 1170 году в семье купца, в городе Пизе в Италии. Отец Фибоначчи часто бывал в Алжире по торговым делам, и Леонардо изучал там математику у арабских учителей. Впоследствии он написал несколько математических трудов, наиболее известным из которых является «Книга об абаке», которая содержит почти все арифметические и алгебраические сведения того времени. 2

Числа Фибоначчи - это последовательность чисел, обладающая рядом свойств. Эту числовую последовательность Фибоначчи открыл случайно, когда пытался в 1202 году решить практическую задачу о кроликах. «Некто поместил пару кроликов в некоем месте, огороженном со всех сторон со всех сторон стеной, чтобы узнать, сколько пар кроликов родится в течение года, если природа кроликов такова, что через месяц пара кроликов производит на свет другую пару, а рождают кролики со второго месяца после своего рождения». При решении задачи он учел, что каждая пара кроликов порождает на протяжении жизни еще две пары, а затем погибает. Так появилась последовательность чисел: 1, 1, 2, 3, 5, 8, 13, 21, … В этой последовательности каждое следующее число равно сумме двух предыдущих. Её назвали последовательностью Фибоначчи. Математические свойства последовательности

Мне захотелось исследовать эту последовательность, и я выявил некоторые её свойства. Эта закономерность имеет большое значение. Последовательность все медленнее приближается к некоему постоянному отношению, равному примерно 1, 618, а отношение любого числа к последующему примерно равно 0, 618.

Можно заметить ряд любопытных свойств чисел Фибоначчи: два соседних числа взаимно просты; каждое третье число четно; каждое пятнадцатое оканчивается нулем; каждое четвертое кратно трем. Если выбрать любые 10 соседних чисел из последовательности Фибоначчи и сложить их вместе, всегда получится число, кратное 11. Но это еще не все. Каждая сумма равна числу 11, умноженному на седьмой член взятой последовательности. А вот еще одна любопытная особенность. Для любого n сумма первыхn членов последовательности всегда будет равна разности (n+ 2) - го и первого члена последовательности. Этот факт можно выразить формулой: 1+1+2+3+5+…+an=a n+2 - 1. Теперь в нашем распоряжении имеется следующий трюк: чтобы найти сумму всех членов

последовательности между двумя данными членами, достаточно найти разность соответствующих (n+2)-x членов. Например, a 26 +…+a 40 =a 42 - a 27 . Теперь поищем связь между Фибоначчи, Пифагором и «золотым сечением». Самым известным свидетельством математического гения человечества является теорема Пифагора: в любом прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов его катетов: c 2 =b 2 +a 2 . С геометрической точки зрения мы можем рассматривать все стороны прямоугольного треугольника, как стороны трех построенных на них квадратов. Теорема Пифагора говорит о том, что общая площадь квадратов, построенных на катетах прямоугольного треугольника, равна площади квадрата, построенного на гипотенузе. Если длины сторон прямоугольного треугольника являются целыми числами, то они образуют группу из трех чисел, называемых пифагоровыми тройками. С помощью последовательности Фибоначчи можно отыскать такие тройки. Возьмем любые четыре последовательные числа из последовательности, например, 2, 3, 5 и 8, и построим еще три числа следующим образом:1) произведение двух крайних чисел: 2*8=16;2) удвоенное произведение двух чисел в середине: 2*(3*5)=30;3) сумма квадратов двух средних чисел: 3 2 +5 2 =34; 34 2 =30 2 +16 2 . Этот метод работает для любых четырех последовательных чисел Фибоначчи. Предсказуемым образом ведут себя любые три последовательных числа ряда Фибоначчи. Если перемножить из них два крайних и результат сравнить с квадратом среднего числа, то результат всегда будет отличаться на единицу. Например, для чисел 5, 8 и 13 получим: 5*13=8 2 +1. Если рассмотреть это свойство с точки зрения геометрии, можно заметить нечто странное. Разделим квадрат

размером 8х8 (всего 64 маленьких квадратика) на четыре части, длины сторон которых равны числам Фибоначчи. Теперь из этих частей построим прямоугольник размером 5х13. Его площадь составляют 65 маленьких квадратиков. Откуда же берется дополнительный квадрат? Все дело в том, что идеальный прямоугольник не образуется, а остаются крошечные зазоры, которые в сумме и дают эту дополнительную единицу площади. Треугольник Паскаля также имеет связь с последовательностью Фибоначчи. Надо только написать строки треугольника Паскаля одну под другой, а затем складывать элементы по диагонали. Получится последовательность Фибоначчи.

Теперь рассмотрим «золотой» прямоугольник, одна сторона которого в 1,618 раз длиннее другой. На первый взгляд он может показаться нам обычным прямоугольником. Тем не менее, давайте проделаем простой эксперимент с двумя обыкновенными банковскими картами. Положим одну из них горизонтально, а другую вертикально так, чтобы их нижние стороны находились на одной линии. Если в горизонтальной карте провести диагональную линию и продлить ее, то увидим, что она пройдет в точности через правый верхний угол вертикальной карты - приятная неожиданность. Может быть, это случайность, а может, такие прямоугольники и другие геометрические формы, использующие «золотое сечение», особенно приятны глазу. Думал ли Леонардо да Винчи о золотом сечении, работая над своим шедевром? Это кажется маловероятным. Однако можно утверждать, что он придавал большое значение связи между эстетикой и математикой.

Числа Фибоначчи в природе

Связь золотого сечения с красотой - вопрос не только человеческого восприятия. Похоже, сама природа выделила Ф особую роль. Если в «золотой» прямоугольник последовательно вписать квадраты, затем в каждом квадрате провести дугу, то получится элегантная кривая, которая называется логарифмической спиралью. Она вовсе не является математическим курьезом. 5

Наоборот, эта замечательная линия часто встречается в физическом мире: от раковины наутилуса до рукавов галактик, и в элегантной спирали лепестков распустившейся розы. Связи между золотым сечением и числами Фибоначчи многочисленны и неожиданны. Рассмотрим цветок, внешне сильно отличающийся от розы, - подсолнечник с семенами. Первое, что мы видим, - семена расположены по спиралям двух видов: по часовой стрелке и против часовой стрелки. Если посчитаем спирали почасовой стрелки, то получим два, казалось бы, обычных числа: 21 и 34. Это не единственный пример, когда можно встретить числа Фибоначчи в структуре растений.

Природа даёт нам многочисленные примеры расположения однородных предметов, описываемых числами Фибоначчи. В разнообразных спиралевидных расположениях мелких частей растений обычно можно усмотреть два семейства спиралей. В одном из этих семейств спирали завиваются по часовой стрелке, а в другом - против. Числа спиралей одного и другого типов часто оказываются соседними числами Фибоначчи. Так, взяв молодую сосновую веточку, легко заметить, что хвоинки образуют две спирали, идущие слева снизу вправо вверх. На многих шишках семена расположены в трёх спиралях, полого навивающихся на стержень шишки. Они же расположены в пяти спиралях, круто навивающихся в противоположном направлении. В крупных шишках удаётся наблюдать 5 и 8, и даже 8 и 13 спиралей. Хорошо заметны спирали Фибоначчи и на ананасе: обычно их бывает 8 и 13.

Отросток цикория делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок ещё меньшего размера и снова выброс. Импульсы его роста постепенно уменьшаются в пропорции «золотого» сечения. Чтобы оценить огромную роль чисел Фибоначчи, достаточно лишь взглянуть на красоту окружающей нас природы. Числа Фибоначчи можно найти в количестве

ответвлений на стебле каждого растущего растения и в числе лепестков.

Пересчитаем лепестки некоторых цветов —ириса с его 3 лепестками, примулы с 5 лепестками, амброзии с 13 лепестками, нивяника с 34 лепестками, астры с 55 лепестками и т.д. Случайно ли это, или это закон природы? Посмотрите на стебли и цветы тысячелистника. Таким образом, суммарной последовательностью Фибоначчи можно легко трактовать закономерность проявлений «Золотых» чисел, встречаемых в природе. Эти законы действуют независимо от нашего сознания и желания принимать их или нет. Закономерности «золотой» симметрии проявляются в энергетических переходах элементарных частиц, в строении некоторых химических соединений, в планетарных и космических системах, в генных структурах живых организмов, в строении отдельных органов человека и тела в целом, а также проявляются в биоритмах и функционировании головного мозга и зрительного восприятия.

Числа Фибоначчи в архитектуре

«Золотое сечение» проявляется и во многих замечательных архитектурных творениях на протяжении всей истории человечества. Оказывается, еще древнегреческие и древнеегипетские математики знали эти коэффициенты задолго до Фибоначчи и называли их «золотым сечением». Принцип «золотого сечения» греки использовали при строительстве Парфенона, египтяне - Великой пирамиды в Гизе. Достижения в области строительной техники и разработки новых материалов открыли новые возможности для архитекторов ХХ века. Американец Фрэнк Ллойд Райт был одним из главных сторонников органической архитектуры. Незадолго до смерти он спроектировал музей Соломона Гуггенхайма в Нью-Йорке, представляющий собой опрокинутую спираль, а интерьер музея напоминает раковину наутилуса. Польско-израильский архитектор Цви Хекер также использовал спиральные конструкции в проекте школы имени Хайнца Галински в Берлине, построенной в 1995 году. Хекер начал с идеи подсолнечника с центральным кругом, откуда

расходятся все архитектурные элементы. Здание представляет собой сочетание

ортогональных и концентрических спиралей, символизируя взаимодействие ограниченных человеческих знаний и управляемого хаоса природы. Его архитектура имитирует растение, которое следует за движением Солнца, поэтому классные комнаты освещены в течение всего дня.

В Куинси-парке, расположенном в Кембридже, штат Массачусетс (США), «золотую» спираль можно встретить часто. Парк был спроектирован в 1997 году художником Дэвидом Филлипсом и находится недалеко от Математического института Клэя. Это заведение является известным центром математических исследований. В Куинси-парке можно прогуливаться среди «золотых» спиралей и металлических кривых, рельефов из двух раковин и скалы с символом квадратного корня. На табличке написана информация о «золотой» пропорции. Даже парковка для велосипедов использует символ Ф.

Числа Фибоначчи в психологии

В психологии отмечены переломные моменты, кризисы, перевороты, знаменующие на жизненном пути человека преобразования структуры и функций души. Если человек успешно преодолел эти кризисы, то становится способным решать задачи нового класса, о которых раньше даже не задумывался.

Наличие коренных изменений дает основание рассматривать время жизни в качестве решающего фактора развития духовных качеств. Ведь природа отмеряет нам время не щедро, «ни сколько будет, столько и будет», а ровно столько, чтобы процесс развития материализовался:

    в структурах тела;

    в чувствах, мышлении и психомоторике — пока они не приобретут гармонию , необходимую для возникновения и запуска механизма

    творчества;

    в структуре энергопотенциала человека.

Развитие тела нельзя остановить: ребенок становится взрослым человеком. С механизмом же творчества не так все просто. Его развитие можно остановить и изменить его направление.

Существует ли шанс догнать время? Безусловно. Но для этого нужно выполнить огромную работу над собой. То, что развивается свободно, естественным путем, не требует специальных усилий: ребенок свободно развивается и не замечает этой огромной работы, потому что процесс свободного развития создается без насилия над собой.

Как понимается смысл жизненного пути в обыденном сознании? Обыватель видит его так: у подножия — рождение, на вершине — расцвет сил, а потом — все идет под горку.

Мудрец же скажет: все намного сложнее. Восхождение он разделяет на этапы: детство, отрочество, юность… Почему так? Мало, кто способен ответить, хотя каждый уверен, что это замкнутые, целостные этапы жизни.

Чтобы выяснить, как развивается механизм творчества, В.В. Клименко воспользовался математикой, а именно законами чисел Фибоначчи и пропорцией «золотого сечения» — законами природы и жизни человека.

Числа Фибоначчи делят нашу жизнь на этапы по количеству прожитых лет: 0 — начало отсчета — ребенок родился. У него еще отсутствуют не только психомоторика, мышление, чувства, воображение, но и оперативный энергопотенциал. Он — начало новой жизни, новой гармонии;

    1 — ребенок овладел ходьбой и осваивает ближайшее окружение;

    2 — понимает речь и действует, пользуясь словесными указаниями;

    3 — действует посредством слова, задает вопросы;

    5 — «возраст грации» — гармония психомоторики, памяти, воображения и чувств, которые уже позволяют ребенку охватить мир во всей его целостности;

    8 — на передний план выходят чувства. Им служит воображение, а мышление силами своей критичности направлено на поддержку внутренней и внешней гармонии жизни;

    13 — начинает работать механизм таланта, направленный на превращение приобретенного в процессе наследования материала, развивая свой собственный талант;

    21 — механизм творчества приблизился к состоянию гармонии и делаются попытки выполнять талантливую работу;

    34— гармония мышления, чувств, воображения и психомоторики: рождается способность к гениальной работе;

    55 — в этом возрасте, при условии сохраненной гармонии души и тела, человек готов стать творцом. И так далее…

Что же такое засечки «Чисел Фибоначчи»? Они могут быть сравнимы с плотинами на жизненном пути. Эти плотины ожидают каждого из нас. Прежде всего необходимо преодолеть каждую их них, а потом терпеливо поднимать свой уровень развития, пока в один прекрасный день она не развалится, открывая свободному течению путь к следующей.

Теперь, когда нам понятен смысл этих узловых точек возрастного развития, попробуем расшифровать, как все это происходит.

В1 год ребенок овладевает ходьбой. До этого он познавал мир передней частью головы. Теперь же он познает мир руками — исключительная привилегия человека. Животное передвигается в пространстве, а он, познавая, овладевает пространством и осваивает территорию, на которой живет.

2 года — понимает слово и действует в соответствии с ним. Это значит, что:

ребенок усваивает минимальное количество слов — смыслов и образов действий;

    пока что не отделяет себя от окружающей среды и слит в целостность с окружающим,

    поэтому действует по чужому указанию. В этом возрасте он самый послушный и приятный для родителей. Из человека чувственного ребенок превращается в человека познающего.

3 года — действие при помощи собственного слова. Уже произошло отделение этого человека от окружающей среды — и он учится быть самостоятельно действующей личностью. Отсюда он:

    сознательно противостоит среде и родителям, воспитателям в детском саду и т.д.;

    осознает свой суверенитет и борется за самостоятельность;

    старается подчинить своей воле близких и хорошо знакомых людей.

Теперь для ребенка слово — это действие. С этого начинается действующий человек.

5 лет — «возраст грации». Он — олицетворение гармонии. Игры, танцы, ловкие движения — все насыщено гармонией, которой человек старается овладеть собственными силами. Гармоничная психомоторика содействует приведению к новому состоянию. Поэтому ребенок направлен на психомоторную активность и стремится к максимально активным действиям.

Материализация продуктов работы чувствительности осуществляется посредством:

    способности к отображению окружающей среды и себя как части этого мира (мы слышим, видим, прикасаемся, нюхаем и т.д. — все органы чувств работают на этот процесс);

    способности к проектированию внешнего мира, в том числе и себя

    (создание второй природы, гипотез — сделать завтра то и другое, построить новую машину, решить проблему), силами критичности мышления, чувств и воображения;

    способности к созиданию второй, рукотворной природы, продуктов деятельности (реализация задуманного, конкретные умственные или психомоторные действия с конкретными предметами и процессами).

После 5 лет механизм воображения выходит вперед и начинает доминировать над остальными. Ребенок выполняет гигантскую работу, создавая фантастические образы, и живет в мире сказок и мифов. Гипертрофированность воображения ребенка вызывает у взрослых удивление, потому что воображение никак не соответствует действительности.

8 лет — на передний план выходят чувства и возникают собственные мерки чувств (познавательных, нравственных, эстетических), когда ребенок безошибочно:

    оценивает известное и неизвестное;

    отличает моральное от аморального, нравственное от безнравственного;

    прекрасное от того, что угрожает жизни, гармонию от хаоса.

13 лет — начинает работать механизм творчества. Но это не значит, что он работает на полную мощность. На первый план выходит один из элементов механизма, а все остальные содействуют его работе. Если и в этом возрастном периоде развития сохраняется гармония, которая почти все время перестраивает свою структуру, то отрок безболезненно доберется до следующей плотины, незаметно для себя преодолеет ее и будет жить в возрасте революционера. В возрасте революционера отрок должен сделать новый шаг вперед: отделиться от ближайшего социума и жить в нем гармоничной жизнью и деятельностью. Не каждый может решить эту задачу, возникающую перед каждым из нас.

21 год. Если революционер успешно преодолел первую гармоничную вершину жизни, то его механизм таланта способен выполнять талантливую

работу. Чувства (познавательные, моральные или эстетические) иногда затмевают мышление, но в общем все элементы работают слаженно: чувства открыты миру, а логическое мышление способно с этой вершины называть и находить меры вещей.

Механизм творчества, развиваясь нормально, достигает состояния, позволяющего получать определенные плоды. Он начинает работать. В этом возрасте вперед выходит механизм чувств. По мере того, как воображение и его продукты оцениваются чувствами и мышлением, между ними возникает антагонизм. Побеждают чувства. Эта способность постепенно набирает мощность, и отрок начинает ею пользоваться.

34 года — уравновешенность и гармоничность, продуктивная действенность таланта. Гармония мышления, чувств и воображения, психомоторики, которая пополняется оптимальным энергопотенциалом, и механизм в целом — рождается возможность исполнять гениальную работу.

55 лет — человек может стать творцом. Третья гармоничная вершина жизни: мышление подчиняет себе силу чувств.

Числа Фибоначчи называют этапы развития человека. Пройдет ли человек этот путь без остановок, зависит от родителей и учителей, образовательной системы, а дальше — от него самого и от того, как человек будет познавать и преодолевать самого себя.

На жизненном пути человек открывает 7 предметов отношений:

    От дня рождения до 2-х лет — открытие физического и предметного мира ближайшего окружения.

    От 2-х до 3-х лет — открытие себя: «Я — Сам».

    От 3-х до 5-ти лет — речь, действенный мир слов, гармонии и системы «Я — Ты».

    От 5-ти до 8-ми лет — открытие мира чужих мыслей, чувств и образов — системы «Я — Мы».

    От 8 до 13 лет — открытие мира задач и проблем, решенных гениями и талантами человечества — системы «Я — Духовность».

    От 13 до 21 года — открытие способностей самостоятельно решать всем известные задачи, когда мысли, чувства и воображение начинают активно работать, возникает система «Я — Ноосфера».

    От 21 до 34 лет — открытие способности создавать новый мир или его фрагменты — осознание самоконцепции «Я — Творец».

Жизненный путь имеет пространственно-временную структуру. Он состоит из возрастных и индивидуальных фаз, определяемых по многим параметрам жизни. Человек овладевает в определенной мере обстоятельствами своей жизни, становится творцом своей истории и творцом истории общества. Подлинно творческое отношение к жизни, однако, появляется далеко не сразу и даже не у всякого человека. Между фазами жизненного пути существуют генетические связи, и это обусловливает закономерный его характер. Отсюда следует, что в принципе можно предсказывать будущее развитие на основе знания о ранних его фазах.

Числа Фибоначчи в астрономии

Из истории астрономии известно, что И.Тициус, немецкий астроном XVIII в., с помощью ряда Фибоначчи нашёл закономерность и порядок в расстояниях между планетами солнечной системы. Но один случай, казалось бы, противоречил закону: между Марсом и Юпитером не было планеты. Но после смерти Тициуса в начале XIX в. сосредоточенное наблюдение за этим участком неба привело к открытию пояса астероидов.

Заключение

В процессе исследования я выяснил, что числа Фибоначчи нашли широкое применение в техническом анализе цен на бирже. Один из простейших способов применения чисел Фибоначчи на практике - определение отрезков времени, через которое произойдёт то или иное событие, например, изменение цены. Аналитик отсчитывает определённое количество фибоначчиевских дней или недель (13,21,34,55 и т.д.) от предыдущего сходного события и делает прогноз. Но в этом мне ещё слишком сложно разобраться. Хотя Фибоначчи и был величайшим математиком средних веков, единственные памятники Фибоначчи - это статуя напротив Пизанской башни и две улицы, которые носят его имя: одна - в Пизе, а другая - во Флоренции. И всё-таки, в связи со всем увиденным и прочитанным мною возникают вполне закономерные вопросы. Откуда взялись эти числа? Кто этот архитектор вселенной, попытавшийся сделать её идеальной? Что же будет дальше? Найдя ответ на один вопрос, получишь следующий. Разгадаешь его, получишь два новых. Разберёшься с ними, появятся ещё три. Решив и их, обзаведёшься пятью нерешёнными. Потом восьмью, тринадцатью и т.д. Не забывайте, что на двух руках по пять пальцев, два из которых состоят из двух фаланг, а восемь - из трёх.

Литература:

    Волошинов А.В. «Математика и искусство», М., Просвещение, 1992г.

    Воробьёв Н.Н. «Числа Фибоначчи», М., Наука, 1984г.

    Стахов А.П. «Код да Винчи и ряд Фибоначчи», Питер формат, 2006 г.

    Ф. Корвалан «Золотое сечение. Математический язык красоты», М., Де Агостини, 2014 г.

    Максименко С.Д. «Сенситивные периоды жизни и их коды».

    «Числа Фибоначчи». Википедия

Министерство образования и науки Украины

Одесский государственный экономический университет

кафедра________________________

Реферат по курсу "Экономический анализ"

на тему:

"Числа Фибоначчи: технический анализ".

Выполнил: студент 33 группы ФМЭ

Кушниренко Сергей

Научный руководитель:

Коптельцева Лидия Васильевна

Одесса

Введение. 3

История и свойства последовательности. 3

Использование чисел Фибоначчи в изменении тренда. 5

Множественные ценовые цели по Фибоначчи. 8

Заключение. 11

Список литературы.. 12

Введение.

Итальянский купец Леонардо из Пизы (1180-1240), более известный под прозвищем Фибоначчи был, безусловно, самым значительным математиком средневековья. Роль его книг в развитии математики и распространении в Европе математических знаний трудно переоценить.
Жизнь и научная карьера Леонарда теснейшим образом связана с развитием европейской культуры и науки.
В век Фибоначчи возраждение было еще далеко, однако история даровала Италии краткий промежуток времени, который вполне можно было назвать репетицией надвигающейся эпохи Ренессанса. Этой репетицией руководил Фридрих 2, император (с 1220 года) "Священной Римской империи Германской Нации". Воспитанный в традициях южной Италии Фридрих II был внутренне глубоко далек от европейского христианского рыцарства. Поэтому к преподаванию в основанном им Неаполитанском университете, наряду с христианскими учеными, он привлек арабов и евреев.
Столь любимые его дедом рыцарские турниры, на которых сражающиеся калечили друг друга на потеху публике, Фридрих II совсем не признавал. Вместо этого он культивировал гораздо менее кровавые математические соревнования, на которых противники обменивались не ударами, а задачами.
На таких турнирах и заблистал талант Леонарда Фибоначчи. Этому способствовало хорошее образование, которое дал сыну купец Боначчи, взявший его с собой на Восток и приставивший к нему арабских учителей.
Впоследствии Фибоначчи пользовался неизменным покровительством Фридриха II.
Это покровительство стимулировало выпуск научных трактатов Фибоначчи:
обширнейшей "Книге абака", написанной в 1202 году, но дошедшей до нас во втором своем варианте, который относится к 1228 г.; "Практики геометрии"(1220г.); "Книги квадратов"(1225г.). По этим книгам, превосходящим по своему уровню арабские и средневековые европейские сочинения, учили математику чуть ли не до времен Декарта (17 в.).

Наибольший интерес представляет сочинение "Книга абака". Эта книга представляет собой объемный труд, содержащий почти все арифметические и алгебраические сведения того времени и сыгравший значительную роль в развитии математики в Западной Европе в течении нескольких следующих столетий. В частности, именно по этой книге европейцы познакомились с индусскими ("арабскими") цыфрами.

Основной целью ланного реферата является изучение основных свойствчисел Фибоначчи и их применение в практике трендового анализа.

История и свойства последовательности.

Леонард Фибоначчи – один из величайших математиков Средневековья. В одном и своих трудов “Книга вычислений” Фибоначчи описал индо-арабскую систему исчисления и преимущества ее использования перед римской.

Числовая последовательность Фибоначчи имеет много интересных свойств. Например, сумма двух соседних чисел последовательности дает значение следующего за ними (например, 1+1=2; 2+3=5 и т.д.), что подтверждает существование так называемых коэффициентов Фибоначчи, т.е. постоянных соотношений.

Одно из самых главных следствий этих свойств различных членов последовательности определяются следующим образом:

1.Отношение каждого числа к последующему более и более стремится к 0.618 по увеличении порядкового номера. Отношение же каждого числе к предыдущему стремится к 1.618 (обратному к 0.618). Число 0.618 называют (ФИ), и мы поговорим о нем подробнее немного позже.

2.При делении каждого числа на следующее за ним через одно получаем число 0.382; наоборот – соответственно 2.618.

3.Подбирая таким образом соотношения, получаем основной набор фибоначчиевских коэффициентов: … 4.235, 2.618, 1.618, 0.618, 0.382, 0.236. упомянем также 0.5 (1/2). Все они играют особую роль в природе, и в частности – в техническом анализе.

Важно отметить, что Фибоначчи как бы напомнил свою последовательность человечеству. Она была известна еще древним грекам и египтянам. И действительно, с тех пор в природе, архитектуре, изобразительном искусстве, математике, физике, астрономии, биологии и многих других областях были найдены закономерности, описываемые коэффициентами Фибоначчи.

Например, число 0.618 представляет собой постоянный коэффициент в так называемом золотом сечении (рис.1), где любой отрезок делится таким образом, что соотношение между его меньшей и большей частью равно соотношению между большей частью и всем отрезком. Таким образом, число 0.618 известно еще как золотой коэффициент или золотая середина. Такого типа пропорцию можно встретить абсолютно везде (рис.2).

Рисунок 1. Золотое сечение


Рисунок 2. Примеры соотношений Фибоначчи



Золотой коэффициент используется природой для построения ее частей, начиная от больших и заканчивая малыми. Современная наука считает, что Вселенная развивается по так называемой золотой спирали (рис.3), которая строится именно с помощью золотого коэффициента. Эта спираль в буквальном смысле не имеет конца и начала. Меньшие витки никогда не сходятся в одну и ту же точку, а большие неограниченно развиваются в пространстве.

Рисунок 3. Золотая спираль

Некоторые из соблюдающихся соотношений:

Самое важное заключается в том, что с помощью всех этих, в каком-то роде мистических, чисел, описываются разнородные процессы во Вселенной.

Использование чисел Фибоначчи в изменении тренда.

Изучив вышеизложенную последовательность, можно предположить использование последовательность Фибоначчи при прогнозировании цены, то есть. в техническом анализе.

Эту мысль высказал еще в 30-е годы один из самых известных людей, внесших вклад в теорию технического анализа – Ральф Нельсон Эллиотт. С тех пор конкретная польза применения этой идеи практически во всех методах технического анализа не вызывает сомнения.

Ральф Hельсон Эллиотт был инженером. После серьезной болезни в начале 1930х гг. он занялся анализом биржевых цен, особенно индекса Доу-Джонса. После ряда весьма успешных предсказаний Эллиотт опубликовал в 1939 году серию статей в журнале Financial World Magazine. В них впервые была представлена его точка зрения, что движения индекса Доу-Джонса подчиняются определенным ритмам. Согласно Эллиотту, все эти движения следуют тому же закону, что и приливы - за приливом следует отлив, за действием (акцией) следует противодействие (реакция). Эта схема не зависит от времени, поскольку структура рынка, взятого как единое целое, остается неизменной.

Эллиотт писал: "Закон природы включает в рассмотрение важнейший элемент- ритмичность. Закон природы - это не некая система, не метод игры на рынке, а явление, характерное, видимо, для хода любой человеческой деятельности. Его применение в прогнозировании революционно."

Этот шанс предсказать движения цен побуждает легионы аналитиков трудиться денно и нощно. Вводя свой подход, Эллиотт был очень конкретен. Он писал: "любой человеческой деятельности присущи три отличительных особенности: форма, время и отношение, -и все они подчиняются суммационной последовательности Фибоначчи".

Один из простейших способов применения чисел Фибоначчи на практике – определение отрезков времени, через которое произойдет то или иное событие, например, изменение тренда. Аналитик отсчитывает определенное количество фибоначчиевских дней или недель (13, 21, 34, 55 и т.д.) от предыдущего сходного события.

Числа Фибоначчи имеют широкое применение при определении длительности периода в Теории Циклов. За основу каждого доминантного цикла берется определенное количество дней, недель, месяцев, связанное с числами Фибоначчи. Например, длина Цикла (Волны) Кондратьева равна 54 годам. Отметим близость этой величины к фибоначчиевскому числу 55.

Один из способов применения числа Фибоначчи – построение дуг (рис.4).

Рисунок 4. Дуги.


Центр для такой дуги выбирается в точке важного потолка (top) или дна (bottom). Радиус дуг вычисляется с помощью умножения коэффициентов Фибоначчи на величину предыдущего значительного спада или подъема цен.

Выбираемые при этой коэффициенты имеют значения 38.2%, 50%, 61.8%. В соответствии со своим расположением дуги будут играть роль сопротивления или поддержки.

ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ

«КРИВЛЯНСКАЯ СРЕДНЯЯ ШКОЛА»

ЖАБИНКОВСКОГО РАЙОНА

ЧИСЛА ФИБОНАЧЧИ И ЗОЛОТОЕ СЕЧЕНИЕ

Исследовательская работа

Работу выполнила:

учащаяся 10 класса

Садовничик Валерия Алексеевна

Руководитель:

Лавренюк Лариса Николаевна,

учитель информатики и

математики 1 квалификационной

Числа Фибоначчи и природа

Характерной чертой строения растений и их развития является спиральность. Еще Гёте, который был не только великим поэтом, но и естествоиспытателем, считал спиральность одним из характерных признаков всех организмов, проявлением самой сокровенной сущности жизни. Спирально закручиваются усики растений, по спирали происходит рост тканей в стволах деревьев, по спирали расположены семечки в подсолнечнике, спиральные движения (нутации) наблюдаются при росте корней и побегов.

На первый взгляд может показаться, что число листьев, цветков может изменяться в очень широких пределах и принимать любые значения. Но такой вывод оказывается несостоятельным. Исследования показали, что число одноименных органов в растениях не является произвольным, существуют значения, часто встречающиеся и значения, которые встречаются очень редко.

В живой природе широко распространены формы, основанные на пентагональной симметрии – морские звезды, морские ежи, цветы.

Фот.13 . Лютик

В ромашке число лепестков 55 или 89.

Фот.14 . Ромашка

Пиретрум имеет 34 лепестка.

Фот. 15. Пиретрум

Посмотрим на сосновую шишку. Чешуйки на ее поверхности расположены строго закономерно - по двум спиралям, которые пересекаются приблизительно под прямым углом. Число таких спиралей у сосновых шишек равно 8 и 13 или 13 и 21.

Фот.16 . Шишка

В корзинках подсолнечника семена также расположены по двум спиралям, их число составляет обычно 34/55, 55/89.

Фот.17 . Подсолнух

Присмотримся к ракушкам. Если пересчитать число «ребер жесткости» у первой, взятой наугад ракушки - получилось 21. Возьмем вторую, третью, пятую, десятую ракушку - у всех будет 21 ребро на поверхности. Видно, моллюски были не только хорошими инженерами, они «знали» числа Фибоначчи.

Фот.18 . Ракушка

Здесь вновь мы видим закономерное сочетание чисел Фибоначчи, расположенных рядом: 2/3, 3/5, 5/8, 8/13, 13/21, 21/34, 34/55, 55/89. Их отношение в пределе стремится к золотой пропорции, выраженной числом 0,61803…

Числа Фибоначчи и животные

Число лучей у морских звезд отвечает ряду чисел Фибоначчи или очень близко к ним и равно 5,8, 13,21,34,55.

Фот.19 . Морская звезда

Современные членистоногие очень разнообразны. У лангуста также пять пар ног, на хвосте пять перьев, брюшко делится на пять сегментов, а каждая нога состоит из пяти частей.

Фот. 20. Лангуст

У некоторых насекомых брюшко состоит из восьми сегментов, имеется три пары конечностей, состоящих из восьми частей, а из ротового отверстия выходят восемь различных усикоподобных органов. У нашего хорошо знакомого комара - три пары ног, брюшко делится на восемь сегментов, на голове пять усиков - антенн. Личинка комара членится на 12 сегментов.

Фот. 21. Комар

У мухи капустной брюшко членится на пять частей, имеется три пары ног, а личинка разделена на восемь сегментов. Каждое из двух крыльев разделено тонкими прожилками на восемь частей.

Гусеницы многих насекомых членятся на 13 сегментов, например, у шкуроеда, мукоеда, козявки мавританской. У большинства жуков-вредителей гусеница членится на 13 сегментов. Очень характерно строение ног у жуков. Каждая нога состоит из трех частей, как и у высших животных, - из плечевой, предплечья и лапы. Тонкие, ажурные лапы жуков членятся на пять частей.

Ажурные, прозрачные, невесомые крылья стрекозы - это шедевр «инженерного» мастерства природы. Какие же пропорции положены в основу конструкции этого крохотного летательного мускулолета? Отношение размаха крыльев к длине тела у многих стрекоз равно 4/3. Тело стрекозы делится на две основные части: массивный корпус и длинный тонкий хвост. В корпусе выделяется три части: голова, грудь, брюшко. Брюшко разбито на пять сегментов, а хвост состоит из восьми частей. Сюда еще необходимо добавить три пары ног с их членением на три части.

Фот. 22. Стрекоза

Нетрудно увидеть в этой последовательности членения целого на части развертывание ряда чисел Фибоначчи. Длина хвоста, корпуса и общая длина стрекозы связаны между собой золотой пропорцией: отношение длин хвоста и корпуса равно отношению общей длины к длине хвоста.

Неудивительно, что стрекоза выглядит столь совершенной, ведь она создана по законам золотой пропорции.

Вид черепахи на фоне покрытого трещинами такыра - явление удивительное. В центре панциря большое овальное поле с крупными сросшимися роговыми пластинами, а по краям - кайма из более мелких пластинок.

Фот. 23. Черепаха

Возьмите любую черепаху - от близкой нам болотной до гигантской морской, суповой черепахи - и вы убедитесь, что рисунок на панцире у них аналогичный: на овальном поле расположено 13 сросшихся роговых пластин - 5 пластин в центре и 8 - по краям, а на периферийной кайме около 21 пластинки (у чилийской черепахи по периферии панциря точно 21 пластина). На лапах у черепах по 5 пальцев, а позвоночный столб состоит из 34 позвонков. Нетрудно заметить, что все указанные величины отвечают числам Фибоначчи. Следовательно, развитие черепахи, формирование ее тела, членение целого на части осуществлялось по закону ряда чисел Фибоначчи.

Высшим типом животных на планете являются млекопитающие. Число ребер у многих видов животных равно или близко к тринадцати. У совершенно разных млекопитающих - кита, верблюда, оленя, тура - число ребер составляет 13 ± 1. Число позвонков меняется очень сильно, особенно за счет хвостов, которые могут быть различной длины даже у одного и того же вида животного. Но у многих из них число позвонков равно или близко к 34 и 55. Так, 34 позвонка у гигантского оленя, 55 - у кита.

Скелет конечностей домашних животных состоит из трех тождественных костных звеньев: плечевой (тазовой) кости, кости предплечья (голени) и кости лапы (стопы). Стопа, в свою очередь, состоит из трех костных звеньев.

Число зубов у многих домашних животных тяготеет к числам Фибоначчи: у кролика 14 пар, у собаки, свиньи, лошади - 21 ± 1 пара зубов. У диких животных число зубов изменяется более широко: у одного сумчатого хищника оно равно 54, у гиены - 34, у одного из видов дельфинов достигает 233. Общее число костей в скелете домашних животных (с учетом зубов) у одной группы близко к 230, а у другой - к 300. Следует учесть, что в число костей скелета не включены маленькие слуховые косточки и непостоянные косточки. С их учетом общее число костей скелета у многих животных станет близким к 233, а у других - превысит 300. Как видим, членение тела, сопровождавшееся развитием скелета, характеризуется дискретным изменением числа костей в различных органах животных, и эти числа отвечают числам Фибоначчи или очень близки к ним, образуя ряд 3, 5, 8, 13, 21, 34, 55, 89, 144, 233. Отношение размеров у большинства куриных яиц равно 4:3 (у некоторых 3/2), семечек тыквы - 3:2, арбузных семечек - 3/2. Отношение длины сосновых шишек к их диаметру оказалось равным 2:1. Размеры березовых листьев в среднем очень близки к, а желудей - 5:2.

Считается, что если необходимо разбить на две части цветочный газон (трава и цветы), то не следует делать эти полосы равными по ширине, красивее будет, если взять их в отношении 5: 8 или 8: 13, т.е. воспользоваться такой пропорцией, которые называется «золотым сечением».

Числа Фибоначчи и фотография

Применительно к фотографическому искусству правило золотого сечения делит кадр двумя горизонтальными и двумя вертикальными линиями на 9 неравных прямоугольников. Чтобы облегчить себе задачу съемки сбалансированных изображений, фотографы немного упростили задачу и стали делить кадр на 9 равных прямоугольников в соответствии с числами Фибоначчи. Так правило золотого сечения трансформировалось в правило третей, которое относится к одному из принципов построения композиции.

Фот. 24. Кадр и золотое сечение

В видоискателях современных цифровых камер точки фокусировки расположены на позициях 2/8 или на воображаемых линиях, делящих кадр по правилу золотого сечения.

Фот.25. Цифровая фотокамера и точки фокусировки

Фот.26.

Фот.27. Фотография и точки фокусировки

Правило третей применимо ко всем сюжетным композициям: снимаете вы пейзаж или портрет, натюрморт или репортаж. Пока ваше чувство гармонии не стало приобретенным и бессознательным, соблюдение нехитрого правила третей позволит вам делать снимки выразительные, гармоничные, сбалансированные.

Фот.28. Фотография и отношение неба и земли 1 к 2.

Наиболее удачным примером для демонстрации является пейзаж. Принцип композиции заключается в том, что небо и суша (либо водная гладь) должны иметь соотношение 1:2. Одну треть кадра следует отвести под небо, а две трети под сушу или наоборот.

Фот.29. Фотография цветка закручивается по спирали

Фибоначчи и космос

Соотношение воды и суши на планете Земля составляет 62% и 38%.

Размеры Земли и Луны находятся в золотой пропорции.

Фот.30. Размеры Земли и Луны

На рисунке показаны относительные размеры Земли и Луны в масштабе.

Нарисуем радиус Земли. Проведем отрезок от центральной точки Земли до центральной точки Луны, длина которого будет равна). Нарисуем отрезок для соединения двух данных отрезков, чтобы сформировать треугольник. Получаем золотой треугольник.

Сатурн показывает золотую пропорцию в нескольких ее измерениях

Фот.31. Сатурн и его кольца

Диаметр Сатурна очень близко находится в отношении золотой пропорции с диаметром колец, как показано зелеными линиями. Радиус в нутренней части колец находится в отношении, очень близком к с внешним диаметром колец, как показано синей линией.

Расстояние планет от Солнца также подчиняется золотой пропорции.

Фот.32. Расстояние планет от Солнца

Золотое сечение в быту

Золотое сечение также используется, чтобы придать стиль и привлекательность в области маркетинга и дизайна повседневных потребительских товаров. Примеров множество, но проиллюстрируем лишь некоторые.

Фот.33. Эмблема Toyota

Фот.34. Золотое сечение и одежда

Фот.34. Золотое сечение и автомобильный дизайн

Фот.35. Эмблема Apple

Фот.36. Эмблема Google

Практические исследования

Теперь применим полученные знания на практике. Проведем сначала измерения среди учащихся 8 класса.

В эксперименте приняли участие 7 учащихся 8 класса, 5 девочек и 2 мальчика. Измерялся рост и расстояние от пупка до пола. Результаты отражены в таблицы. Одна учащаяся идеального телосложения, для неё отношение роста к расстоянию от пупка до пола равно 1,6185. Ещё одна учащаяся очень близка к золотому сечению, . В результате проведенных измерений 29% участников имеют идеальные параметры. Эти результаты в процентах тоже близки к золотому сечению 68% и 32%. Для первой испытуемой мы видим, что 3 отношения из 5 близки к золотому сечению, в процентном соотношении это 60% к 40%. А для второй – 4 из 5, то есть 80% к 20%.

Если внимательно посмотреть на телевизионную картинку, то ее размеры будут 16 к 9 или 16 к 10, что тоже близко к золотому сечению.

Проводя измерения и построения в CorelDRAW X4 и используя кадр новостного канала Россия 24, можно обнаружить следующее:

а) отношение длины к ширине кадра равно 1,7.

б) человек в кадре расположен ровно в точках фокусировки, расположенных на расстоянии 3/8.

Далее обратимся к официальному микроблогу газеты «Известия», другими словами, к твиттер-страничке. Для экрана монитора со сторонами 4:3видим, что «шапка» странички составляет 3/8 от всей высоты странички.

Внимательно посмотрев на фуражки военных, можно обнаружить следующее:

а) фуражка министра обороны РФ имеет отношение указанных частей 21,73 к 15,52, равное 1,4.

б) фуражка пограничника РБ имеет размеры указанных частей 44,42 к 21,33 , что равно 2,1.

в) фуражка времен СССР имеет размеры указанных частей 49,67 к 31,04, что равно 1,6.

Для данной модели подойдет длина платья 113,13 мм.

Если «дорисовать» платье до «идеальной» длины, то получим вот такую картинку.

Все измерения имеют некоторую погрешность, так как проводились по фотографии, что не мешает увидеть тенденцию – всё, что идеально, содержит золотое сечение в той или иной степени.

Заключение

Мир живой природы предстает перед нами совсем иным - подвижным, изменчивым и удивительно разнообразным. Жизнь демонстрирует нам фантастический карнавал разнообразия и неповторимости творческих комбинаций! Мир неживой природы - это прежде всего мир симметрии, придающий его творениям устойчивость и красоту. Мир природы - это прежде всего мир гармонии, в которой действует "закон золотого сечения".

Золотое сечение” представляется тем моментом истины, без выполнения которого не возможно, вообще, что-либо сущее. Что бы мы ни взяли элементом исследования, “золотое сечение” будет везде; если даже нет видимого его соблюдения, то оно обязательно имеет место на энергетическом, молекулярном или клеточном уровнях.

Воистину природа оказывается однообразной (и потому единой!) в проявлении своих фундаментальных закономерностей. Найденные ею «наиболее удачные» решения распространяются на самые различные объекты, на самые разнообразные формы организации. Непрерывность и дискретность организации исходит из двуединства материи - ее корпускулярной и волновой природы, проникает в химию, где дает законы целочисленной стехиометрии, химические соединения постоянного и переменного состава. В ботанике непрерывность и дискретность находят свое специфическое выражение в филлотаксисе, квантах дискретности, квантах роста, единстве дискретности и непрерывности пространственно-временной организации. И вот уже в числовых соотношениях органов растений появляется «принцип кратных отношений», введенный А. Гурским, - полное повторение основного закона химии.

Конечно, заявление, что все эти явления построены на последовательности Фибоначчи, звучит слишком громко, но тенденция на лицо. Да и к тому же сама она далека от совершенства, как и всё в этом мире.

Есть предположение, что ряд Фибоначчи - это попытка природы адаптироваться к более фундаментальной и совершенной золотосечённой логарифмической последовательности, которая практически такая же, только начинается из ниоткуда и уходит в никуда. Природе же обязательно нужно какое-то целое начало, от которого можно оттолкнуться, она не может создать что-то из ничего. Отношения первых членов последовательности Фибоначчи далеки от Золотого Сечения. Но чем дальше мы продвигаемся по ней, тем больше эти отклонения сглаживаются. Для определения любого ряда достаточно знать три его члена, идущие друг за другом. Но только не для золотой последовательности, ей достаточно двух, она является геометрической и арифметической прогрессией одновременно. Можно подумать, будто она основа для всех остальных последовательностей.

Каждый член золотой логарифмической последовательности является степенью Золотой Пропорции (). Часть ряда выглядит примерно так: ... ; ; ; ; ; ; ; ; ; ; ... Если мы округлим значение Золотой пропорции до трёх знаков, то получим =1,618 , тогда ряд выглядит так: ... 0,090 0,146; 0,236; 0,382; 0,618; 1; 1,618; 2,618; 4,236; 6,854; 11,090 ... Каждый следующий член может быть получен не только умножением предыдущего на 1,618 , но и сложением двух предыдущих. Таким образом экспоненциальный рост обеспечивается путем простого сложения двух соседних элементов. Это ряд без начала и конца, и именно на него пытается быть похожей последовательность Фибоначчи. Имея вполне определённое начало, она стремится к идеалу, никогда его не достигая. Такова жизнь.

И всё-таки, в связи со всем увиденным и прочитанным, возникают вполне закономерные вопросы:
Откуда взялись эти числа? Кто этот архитектор вселенной, попытавшийся сделать её идеальной? Было ли когда-то всё так, как он хотел? И если да, то почему сбилось? Мутации? Свободный выбор? Что же будет дальше? Спираль скручивается или раскручивается?

Найдя ответ на один вопрос, получишь следующий. Разгадаешь его, получишь два новых. Разберёшься с ними, появится ещё три. Решив и их, обзаведёшься пятью нерешёнными. Потом восьмью, потом тринадцатью, 21, 34, 55...

Список используемых источников

    Васютинский, Н. Золотая пропорция/ Васютинский Н, Москва, Молодая гвардия, 1990, - 238 с. - (Эврика).

    Воробьев, Н.Н. Числа Фибоначчи,

    Режим доступа: . Дата доступа: 17. 11. 2015.

    Режим доступа: . Дата доступа: 16. 11. 2015.

    Режим доступа: . Дата доступа: 13. 11. 2015.